|
import gradio as gr |
|
import os |
|
|
|
from langchain.document_loaders import PyPDFLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.vectorstores import Chroma |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.llms import HuggingFacePipeline |
|
from langchain.chains import ConversationChain |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.llms import HuggingFaceHub |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
import tqdm |
|
import accelerate |
|
|
|
|
|
default_persist_directory = './chroma_HF/' |
|
default_llm_name1 = "tiiuae/falcon-7b-instruct" |
|
default_llm_name2 = "google/flan-t5-xxl" |
|
default_llm_name3 = "mosaicml/mpt-7b-instruct" |
|
default_llm_name4 = "meta-llama/Llama-2-7b-chat-hf" |
|
default_llm_name5 = "mistralai/Mistral-7B-Instruct-v0.1" |
|
list_llm = [default_llm_name1, default_llm_name2, default_llm_name3, default_llm_name4, default_llm_name5] |
|
|
|
|
|
|
|
def load_doc(list_file_path, chunk_size, chunk_overlap): |
|
|
|
|
|
|
|
loaders = [PyPDFLoader(x) for x in list_file_path] |
|
pages = [] |
|
for loader in loaders: |
|
pages.extend(loader.load()) |
|
|
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size = chunk_size, |
|
chunk_overlap = chunk_overlap) |
|
doc_splits = text_splitter.split_documents(pages) |
|
return doc_splits |
|
|
|
|
|
|
|
def create_db(splits): |
|
embedding = HuggingFaceEmbeddings() |
|
vectordb = Chroma.from_documents( |
|
documents=splits, |
|
embedding=embedding, |
|
persist_directory=default_persist_directory |
|
) |
|
return vectordb |
|
|
|
|
|
|
|
def load_db(): |
|
embedding = HuggingFaceEmbeddings() |
|
vectordb = Chroma( |
|
persist_directory=default_persist_directory, |
|
embedding_function=embedding) |
|
return vectordb |
|
|
|
|
|
|
|
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): |
|
progress(0.1, desc="Initializing HF tokenizer...") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
progress(0.5, desc="Initializing HF Hub...") |
|
llm = HuggingFaceHub( |
|
repo_id=llm_model, |
|
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k} |
|
) |
|
|
|
progress(0.5, desc="Defining buffer memory...") |
|
memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
return_messages=True |
|
) |
|
|
|
retriever=vector_db.as_retriever() |
|
progress(0.8, desc="Defining retrieval chain...") |
|
global qa_chain |
|
qa_chain = ConversationalRetrievalChain.from_llm( |
|
llm, |
|
retriever=retriever, |
|
chain_type="stuff", |
|
memory=memory, |
|
|
|
|
|
|
|
|
|
) |
|
progress(0.9, desc="Done!") |
|
|
|
|
|
|
|
|
|
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()): |
|
|
|
|
|
list_file_path = [x.name for x in list_file_obj if x is not None] |
|
print('list_file_path', list_file_path) |
|
progress(0.25, desc="Loading document...") |
|
|
|
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) |
|
|
|
progress(0.5, desc="Generating vector database...") |
|
|
|
vector_db = create_db(doc_splits) |
|
progress(0.9, desc="Done!") |
|
return vector_db, "Complete!" |
|
|
|
|
|
|
|
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): |
|
print("llm_option",llm_option) |
|
llm_name = list_llm[llm_option] |
|
print("llm_name",llm_name) |
|
initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) |
|
return "Complete!" |
|
|
|
|
|
|
|
def format_chat_history(message, chat_history): |
|
formatted_chat_history = [] |
|
for user_message, bot_message in chat_history: |
|
formatted_chat_history.append(f"User: {user_message}") |
|
formatted_chat_history.append(f"Assistant: {bot_message}") |
|
return formatted_chat_history |
|
|
|
|
|
def conversation(message, history): |
|
formatted_chat_history = format_chat_history(message, history) |
|
|
|
|
|
|
|
response = qa_chain({"question": message, "chat_history": formatted_chat_history}) |
|
|
|
|
|
|
|
new_history = history + [(message, response["answer"])] |
|
return gr.update(value=""), new_history |
|
|
|
|
|
def upload_file(file_obj): |
|
list_file_path = [] |
|
for idx, file in enumerate(file_obj): |
|
file_path = file_obj.name |
|
list_file_path.append(file_path) |
|
|
|
|
|
return list_file_path |
|
|
|
|
|
def demo(): |
|
with gr.Blocks(theme="base") as demo: |
|
vector_db = gr.State() |
|
|
|
|
|
gr.Markdown( |
|
"""<center><h2> Document-based chatbot</center></h2> |
|
<h3>Ask any questions about your PDF documents (single or multiple)</h3> |
|
<i>Note: chatbot performs question-answering using Langchain and LLMs</i> |
|
""") |
|
with gr.Tab("Step 1 - Document pre-processing"): |
|
with gr.Row(): |
|
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF Documents") |
|
|
|
with gr.Row(): |
|
db_btn = gr.Radio(["ChromaDB"], label="Vector database", value = "ChromaDB", type="index", info="Choose your vector database") |
|
with gr.Accordion("Advanced options - Text splitter", open=False): |
|
with gr.Row(): |
|
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True) |
|
with gr.Row(): |
|
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=50, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True) |
|
with gr.Row(): |
|
db_progress = gr.Textbox(label="Database Initialization", value="None") |
|
with gr.Row(): |
|
db_btn = gr.Button("Generating vector database...") |
|
|
|
with gr.Tab("Step 2 - Initializing QA chain"): |
|
with gr.Row(): |
|
llm_btn = gr.Radio(["falcon-7b-instruct", "flan-t5-xxl", "mpt-7b-instruct", "Llama-2-7b-chat-hf", "Mistral-7B-Instruct-v0.1"], \ |
|
label="LLM", value = "falcon-7b-instruct", type="index", info="Choose your LLM model") |
|
with gr.Accordion("Advanced options - LLM", open=False): |
|
slider_temperature = gr.Slider(minimum = 0.0, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True) |
|
slider_maxtokens = gr.Slider(minimum = 256, maximum = 4096, value=1024, step=24, label="Max Tokens", info="Model max tokens", interactive=True) |
|
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True) |
|
with gr.Row(): |
|
llm_progress = gr.Textbox(value="None",label="QA chain Initialization") |
|
with gr.Row(): |
|
qachain_btn = gr.Button("QA chain Initialization...") |
|
|
|
with gr.Tab("Step 3 - Conversation"): |
|
chatbot = gr.Chatbot(height=600) |
|
with gr.Row(): |
|
msg = gr.Textbox(placeholder="Type message", container=True) |
|
with gr.Row(): |
|
submit_btn = gr.Button("Submit") |
|
clear_btn = gr.ClearButton([msg, chatbot]) |
|
|
|
|
|
|
|
db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, db_progress]) |
|
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[llm_progress]).then(lambda: None, None, chatbot, queue=False) |
|
|
|
|
|
msg.submit(conversation, [msg, chatbot], [msg, chatbot], queue=False) |
|
submit_btn.click(conversation, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False) |
|
clear_btn.click(lambda: None, None, chatbot, queue=False) |
|
demo.queue().launch(debug=True) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo() |
|
|