Spaces:
Running
on
Zero
Running
on
Zero
zhengchong
commited on
Commit
·
47e441f
1
Parent(s):
fe2cfb5
chore: Update SCHP model checkpoint loading logic
Browse files- .gitignore +2 -0
- model/SCHP/__init__.py +18 -2
- model/SCHP/__pycache__/__init__.cpython-39.pyc +0 -0
- model/SCHP/networks/AugmentCE2P.py +60 -35
- model/SCHP/networks/__pycache__/AugmentCE2P.cpython-39.pyc +0 -0
- model/SCHP/networks/__pycache__/__init__.cpython-39.pyc +0 -0
- model/SCHP/utils/__pycache__/transforms.cpython-39.pyc +0 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
playground.py
|
2 |
+
__pycache__
|
model/SCHP/__init__.py
CHANGED
@@ -81,12 +81,27 @@ class SCHP:
|
|
81 |
|
82 |
|
83 |
def load_ckpt(self, ckpt_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
state_dict = torch.load(ckpt_path, map_location='cpu')['state_dict']
|
85 |
new_state_dict = OrderedDict()
|
86 |
for k, v in state_dict.items():
|
87 |
name = k[7:] # remove `module.`
|
88 |
new_state_dict[name] = v
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
def _box2cs(self, box):
|
92 |
x, y, w, h = box[:4]
|
@@ -148,7 +163,8 @@ class SCHP:
|
|
148 |
meta_list = [meta]
|
149 |
|
150 |
output = self.model(image)
|
151 |
-
upsample_outputs = self.upsample(output[0][-1])
|
|
|
152 |
upsample_outputs = upsample_outputs.permute(0, 2, 3, 1) # BCHW -> BHWC
|
153 |
|
154 |
output_img_list = []
|
|
|
81 |
|
82 |
|
83 |
def load_ckpt(self, ckpt_path):
|
84 |
+
rename_map = {
|
85 |
+
"decoder.conv3.2.weight": "decoder.conv3.3.weight",
|
86 |
+
"decoder.conv3.3.weight": "decoder.conv3.4.weight",
|
87 |
+
"decoder.conv3.3.bias": "decoder.conv3.4.bias",
|
88 |
+
"decoder.conv3.3.running_mean": "decoder.conv3.4.running_mean",
|
89 |
+
"decoder.conv3.3.running_var": "decoder.conv3.4.running_var",
|
90 |
+
"fushion.3.weight": "fushion.4.weight",
|
91 |
+
"fushion.3.bias": "fushion.4.bias",
|
92 |
+
}
|
93 |
state_dict = torch.load(ckpt_path, map_location='cpu')['state_dict']
|
94 |
new_state_dict = OrderedDict()
|
95 |
for k, v in state_dict.items():
|
96 |
name = k[7:] # remove `module.`
|
97 |
new_state_dict[name] = v
|
98 |
+
new_state_dict_ = OrderedDict()
|
99 |
+
for k, v in list(new_state_dict.items()):
|
100 |
+
if k in rename_map:
|
101 |
+
new_state_dict_[rename_map[k]] = v
|
102 |
+
else:
|
103 |
+
new_state_dict_[k] = v
|
104 |
+
self.model.load_state_dict(new_state_dict_, strict=False)
|
105 |
|
106 |
def _box2cs(self, box):
|
107 |
x, y, w, h = box[:4]
|
|
|
163 |
meta_list = [meta]
|
164 |
|
165 |
output = self.model(image)
|
166 |
+
# upsample_outputs = self.upsample(output[0][-1])
|
167 |
+
upsample_outputs = self.upsample(output)
|
168 |
upsample_outputs = upsample_outputs.permute(0, 2, 3, 1) # BCHW -> BHWC
|
169 |
|
170 |
output_img_list = []
|
model/SCHP/__pycache__/__init__.cpython-39.pyc
CHANGED
Binary files a/model/SCHP/__pycache__/__init__.cpython-39.pyc and b/model/SCHP/__pycache__/__init__.cpython-39.pyc differ
|
|
model/SCHP/networks/AugmentCE2P.py
CHANGED
@@ -11,19 +11,13 @@
|
|
11 |
LICENSE file in the root directory of this source tree.
|
12 |
"""
|
13 |
|
14 |
-
import functools
|
15 |
-
|
16 |
import torch
|
17 |
import torch.nn as nn
|
18 |
from torch.nn import functional as F
|
19 |
-
# Note here we adopt the InplaceABNSync implementation from https://github.com/mapillary/inplace_abn
|
20 |
-
# By default, the InplaceABNSync module contains a BatchNorm Layer and a LeakyReLu layer
|
21 |
-
from inplace_abn import InPlaceABNSync
|
22 |
|
23 |
-
|
24 |
|
25 |
affine_par = True
|
26 |
-
|
27 |
pretrained_settings = {
|
28 |
'resnet101': {
|
29 |
'imagenet': {
|
@@ -99,14 +93,20 @@ class PSPModule(nn.Module):
|
|
99 |
self.bottleneck = nn.Sequential(
|
100 |
nn.Conv2d(features + len(sizes) * out_features, out_features, kernel_size=3, padding=1, dilation=1,
|
101 |
bias=False),
|
102 |
-
|
|
|
103 |
)
|
104 |
|
105 |
def _make_stage(self, features, out_features, size):
|
106 |
prior = nn.AdaptiveAvgPool2d(output_size=(size, size))
|
107 |
conv = nn.Conv2d(features, out_features, kernel_size=1, bias=False)
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
def forward(self, feats):
|
112 |
h, w = feats.size(2), feats.size(3)
|
@@ -128,23 +128,35 @@ class ASPPModule(nn.Module):
|
|
128 |
self.conv1 = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
|
129 |
nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1,
|
130 |
bias=False),
|
131 |
-
|
|
|
|
|
|
|
132 |
self.conv2 = nn.Sequential(
|
133 |
nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1, bias=False),
|
134 |
-
|
|
|
|
|
135 |
self.conv3 = nn.Sequential(
|
136 |
nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[0], dilation=dilations[0], bias=False),
|
137 |
-
|
|
|
|
|
138 |
self.conv4 = nn.Sequential(
|
139 |
nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[1], dilation=dilations[1], bias=False),
|
140 |
-
|
|
|
|
|
141 |
self.conv5 = nn.Sequential(
|
142 |
nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[2], dilation=dilations[2], bias=False),
|
143 |
-
|
|
|
|
|
144 |
|
145 |
self.bottleneck = nn.Sequential(
|
146 |
nn.Conv2d(inner_features * 5, out_features, kernel_size=1, padding=0, dilation=1, bias=False),
|
147 |
-
|
|
|
148 |
nn.Dropout2d(0.1)
|
149 |
)
|
150 |
|
@@ -173,24 +185,27 @@ class Edge_Module(nn.Module):
|
|
173 |
|
174 |
self.conv1 = nn.Sequential(
|
175 |
nn.Conv2d(in_fea[0], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False),
|
176 |
-
|
|
|
177 |
)
|
178 |
self.conv2 = nn.Sequential(
|
179 |
nn.Conv2d(in_fea[1], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False),
|
180 |
-
|
|
|
181 |
)
|
182 |
self.conv3 = nn.Sequential(
|
183 |
nn.Conv2d(in_fea[2], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False),
|
184 |
-
|
|
|
185 |
)
|
186 |
self.conv4 = nn.Conv2d(mid_fea, out_fea, kernel_size=3, padding=1, dilation=1, bias=True)
|
187 |
-
self.conv5 = nn.Conv2d(out_fea * 3, out_fea, kernel_size=1, padding=0, dilation=1, bias=True)
|
188 |
|
189 |
def forward(self, x1, x2, x3):
|
190 |
_, _, h, w = x1.size()
|
191 |
|
192 |
edge1_fea = self.conv1(x1)
|
193 |
-
edge1 = self.conv4(edge1_fea)
|
194 |
edge2_fea = self.conv2(x2)
|
195 |
edge2 = self.conv4(edge2_fea)
|
196 |
edge3_fea = self.conv3(x3)
|
@@ -201,11 +216,12 @@ class Edge_Module(nn.Module):
|
|
201 |
edge2 = F.interpolate(edge2, size=(h, w), mode='bilinear', align_corners=True)
|
202 |
edge3 = F.interpolate(edge3, size=(h, w), mode='bilinear', align_corners=True)
|
203 |
|
204 |
-
edge = torch.cat([edge1, edge2, edge3], dim=1)
|
205 |
edge_fea = torch.cat([edge1_fea, edge2_fea, edge3_fea], dim=1)
|
206 |
-
edge = self.conv5(edge)
|
207 |
|
208 |
-
return edge, edge_fea
|
|
|
209 |
|
210 |
|
211 |
class Decoder_Module(nn.Module):
|
@@ -217,20 +233,24 @@ class Decoder_Module(nn.Module):
|
|
217 |
super(Decoder_Module, self).__init__()
|
218 |
self.conv1 = nn.Sequential(
|
219 |
nn.Conv2d(512, 256, kernel_size=1, padding=0, dilation=1, bias=False),
|
220 |
-
|
|
|
221 |
)
|
222 |
self.conv2 = nn.Sequential(
|
223 |
nn.Conv2d(256, 48, kernel_size=1, stride=1, padding=0, dilation=1, bias=False),
|
224 |
-
|
|
|
225 |
)
|
226 |
self.conv3 = nn.Sequential(
|
227 |
nn.Conv2d(304, 256, kernel_size=1, padding=0, dilation=1, bias=False),
|
228 |
-
|
|
|
229 |
nn.Conv2d(256, 256, kernel_size=1, padding=0, dilation=1, bias=False),
|
230 |
-
|
|
|
231 |
)
|
232 |
|
233 |
-
self.conv4 = nn.Conv2d(256, num_classes, kernel_size=1, padding=0, dilation=1, bias=True)
|
234 |
|
235 |
def forward(self, xt, xl):
|
236 |
_, _, h, w = xl.size()
|
@@ -238,8 +258,9 @@ class Decoder_Module(nn.Module):
|
|
238 |
xl = self.conv2(xl)
|
239 |
x = torch.cat([xt, xl], dim=1)
|
240 |
x = self.conv3(x)
|
241 |
-
seg = self.conv4(x)
|
242 |
-
return seg, x
|
|
|
243 |
|
244 |
|
245 |
class ResNet(nn.Module):
|
@@ -270,7 +291,8 @@ class ResNet(nn.Module):
|
|
270 |
|
271 |
self.fushion = nn.Sequential(
|
272 |
nn.Conv2d(1024, 256, kernel_size=1, padding=0, dilation=1, bias=False),
|
273 |
-
|
|
|
274 |
nn.Dropout2d(0.1),
|
275 |
nn.Conv2d(256, num_classes, kernel_size=1, padding=0, dilation=1, bias=True)
|
276 |
)
|
@@ -304,13 +326,16 @@ class ResNet(nn.Module):
|
|
304 |
x4 = self.layer3(x3)
|
305 |
x5 = self.layer4(x4)
|
306 |
x = self.context_encoding(x5)
|
307 |
-
parsing_result, parsing_fea = self.decoder(x, x2)
|
|
|
308 |
# Edge Branch
|
309 |
-
edge_result, edge_fea = self.edge(x2, x3, x4)
|
|
|
310 |
# Fusion Branch
|
311 |
x = torch.cat([parsing_fea, edge_fea], dim=1)
|
312 |
fusion_result = self.fushion(x)
|
313 |
-
return [[parsing_result, fusion_result], [edge_result]]
|
|
|
314 |
|
315 |
|
316 |
def initialize_pretrained_model(model, settings, pretrained='./models/resnet101-imagenet.pth'):
|
|
|
11 |
LICENSE file in the root directory of this source tree.
|
12 |
"""
|
13 |
|
|
|
|
|
14 |
import torch
|
15 |
import torch.nn as nn
|
16 |
from torch.nn import functional as F
|
|
|
|
|
|
|
17 |
|
18 |
+
from torch.nn import BatchNorm2d, LeakyReLU
|
19 |
|
20 |
affine_par = True
|
|
|
21 |
pretrained_settings = {
|
22 |
'resnet101': {
|
23 |
'imagenet': {
|
|
|
93 |
self.bottleneck = nn.Sequential(
|
94 |
nn.Conv2d(features + len(sizes) * out_features, out_features, kernel_size=3, padding=1, dilation=1,
|
95 |
bias=False),
|
96 |
+
BatchNorm2d(out_features),
|
97 |
+
LeakyReLU(),
|
98 |
)
|
99 |
|
100 |
def _make_stage(self, features, out_features, size):
|
101 |
prior = nn.AdaptiveAvgPool2d(output_size=(size, size))
|
102 |
conv = nn.Conv2d(features, out_features, kernel_size=1, bias=False)
|
103 |
+
return nn.Sequential(
|
104 |
+
prior,
|
105 |
+
conv,
|
106 |
+
# bn
|
107 |
+
BatchNorm2d(out_features),
|
108 |
+
LeakyReLU(),
|
109 |
+
)
|
110 |
|
111 |
def forward(self, feats):
|
112 |
h, w = feats.size(2), feats.size(3)
|
|
|
128 |
self.conv1 = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
|
129 |
nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1,
|
130 |
bias=False),
|
131 |
+
# InPlaceABNSync(inner_features)
|
132 |
+
BatchNorm2d(inner_features),
|
133 |
+
LeakyReLU(),
|
134 |
+
)
|
135 |
self.conv2 = nn.Sequential(
|
136 |
nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1, bias=False),
|
137 |
+
BatchNorm2d(inner_features),
|
138 |
+
LeakyReLU(),
|
139 |
+
)
|
140 |
self.conv3 = nn.Sequential(
|
141 |
nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[0], dilation=dilations[0], bias=False),
|
142 |
+
BatchNorm2d(inner_features),
|
143 |
+
LeakyReLU(),
|
144 |
+
)
|
145 |
self.conv4 = nn.Sequential(
|
146 |
nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[1], dilation=dilations[1], bias=False),
|
147 |
+
BatchNorm2d(inner_features),
|
148 |
+
LeakyReLU(),
|
149 |
+
)
|
150 |
self.conv5 = nn.Sequential(
|
151 |
nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[2], dilation=dilations[2], bias=False),
|
152 |
+
BatchNorm2d(inner_features),
|
153 |
+
LeakyReLU(),
|
154 |
+
)
|
155 |
|
156 |
self.bottleneck = nn.Sequential(
|
157 |
nn.Conv2d(inner_features * 5, out_features, kernel_size=1, padding=0, dilation=1, bias=False),
|
158 |
+
BatchNorm2d(inner_features),
|
159 |
+
LeakyReLU(),
|
160 |
nn.Dropout2d(0.1)
|
161 |
)
|
162 |
|
|
|
185 |
|
186 |
self.conv1 = nn.Sequential(
|
187 |
nn.Conv2d(in_fea[0], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False),
|
188 |
+
BatchNorm2d(mid_fea),
|
189 |
+
LeakyReLU(),
|
190 |
)
|
191 |
self.conv2 = nn.Sequential(
|
192 |
nn.Conv2d(in_fea[1], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False),
|
193 |
+
BatchNorm2d(mid_fea),
|
194 |
+
LeakyReLU(),
|
195 |
)
|
196 |
self.conv3 = nn.Sequential(
|
197 |
nn.Conv2d(in_fea[2], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False),
|
198 |
+
BatchNorm2d(mid_fea),
|
199 |
+
LeakyReLU(),
|
200 |
)
|
201 |
self.conv4 = nn.Conv2d(mid_fea, out_fea, kernel_size=3, padding=1, dilation=1, bias=True)
|
202 |
+
# self.conv5 = nn.Conv2d(out_fea * 3, out_fea, kernel_size=1, padding=0, dilation=1, bias=True)
|
203 |
|
204 |
def forward(self, x1, x2, x3):
|
205 |
_, _, h, w = x1.size()
|
206 |
|
207 |
edge1_fea = self.conv1(x1)
|
208 |
+
# edge1 = self.conv4(edge1_fea)
|
209 |
edge2_fea = self.conv2(x2)
|
210 |
edge2 = self.conv4(edge2_fea)
|
211 |
edge3_fea = self.conv3(x3)
|
|
|
216 |
edge2 = F.interpolate(edge2, size=(h, w), mode='bilinear', align_corners=True)
|
217 |
edge3 = F.interpolate(edge3, size=(h, w), mode='bilinear', align_corners=True)
|
218 |
|
219 |
+
# edge = torch.cat([edge1, edge2, edge3], dim=1)
|
220 |
edge_fea = torch.cat([edge1_fea, edge2_fea, edge3_fea], dim=1)
|
221 |
+
# edge = self.conv5(edge)
|
222 |
|
223 |
+
# return edge, edge_fea
|
224 |
+
return edge_fea
|
225 |
|
226 |
|
227 |
class Decoder_Module(nn.Module):
|
|
|
233 |
super(Decoder_Module, self).__init__()
|
234 |
self.conv1 = nn.Sequential(
|
235 |
nn.Conv2d(512, 256, kernel_size=1, padding=0, dilation=1, bias=False),
|
236 |
+
BatchNorm2d(256),
|
237 |
+
LeakyReLU(),
|
238 |
)
|
239 |
self.conv2 = nn.Sequential(
|
240 |
nn.Conv2d(256, 48, kernel_size=1, stride=1, padding=0, dilation=1, bias=False),
|
241 |
+
BatchNorm2d(48),
|
242 |
+
LeakyReLU(),
|
243 |
)
|
244 |
self.conv3 = nn.Sequential(
|
245 |
nn.Conv2d(304, 256, kernel_size=1, padding=0, dilation=1, bias=False),
|
246 |
+
BatchNorm2d(256),
|
247 |
+
LeakyReLU(),
|
248 |
nn.Conv2d(256, 256, kernel_size=1, padding=0, dilation=1, bias=False),
|
249 |
+
BatchNorm2d(256),
|
250 |
+
LeakyReLU(),
|
251 |
)
|
252 |
|
253 |
+
# self.conv4 = nn.Conv2d(256, num_classes, kernel_size=1, padding=0, dilation=1, bias=True)
|
254 |
|
255 |
def forward(self, xt, xl):
|
256 |
_, _, h, w = xl.size()
|
|
|
258 |
xl = self.conv2(xl)
|
259 |
x = torch.cat([xt, xl], dim=1)
|
260 |
x = self.conv3(x)
|
261 |
+
# seg = self.conv4(x)
|
262 |
+
# return seg, x
|
263 |
+
return x
|
264 |
|
265 |
|
266 |
class ResNet(nn.Module):
|
|
|
291 |
|
292 |
self.fushion = nn.Sequential(
|
293 |
nn.Conv2d(1024, 256, kernel_size=1, padding=0, dilation=1, bias=False),
|
294 |
+
BatchNorm2d(256),
|
295 |
+
LeakyReLU(),
|
296 |
nn.Dropout2d(0.1),
|
297 |
nn.Conv2d(256, num_classes, kernel_size=1, padding=0, dilation=1, bias=True)
|
298 |
)
|
|
|
326 |
x4 = self.layer3(x3)
|
327 |
x5 = self.layer4(x4)
|
328 |
x = self.context_encoding(x5)
|
329 |
+
# parsing_result, parsing_fea = self.decoder(x, x2)
|
330 |
+
parsing_fea = self.decoder(x, x2)
|
331 |
# Edge Branch
|
332 |
+
# edge_result, edge_fea = self.edge(x2, x3, x4)
|
333 |
+
edge_fea = self.edge(x2, x3, x4)
|
334 |
# Fusion Branch
|
335 |
x = torch.cat([parsing_fea, edge_fea], dim=1)
|
336 |
fusion_result = self.fushion(x)
|
337 |
+
# return [[parsing_result, fusion_result], [edge_result]]
|
338 |
+
return fusion_result
|
339 |
|
340 |
|
341 |
def initialize_pretrained_model(model, settings, pretrained='./models/resnet101-imagenet.pth'):
|
model/SCHP/networks/__pycache__/AugmentCE2P.cpython-39.pyc
CHANGED
Binary files a/model/SCHP/networks/__pycache__/AugmentCE2P.cpython-39.pyc and b/model/SCHP/networks/__pycache__/AugmentCE2P.cpython-39.pyc differ
|
|
model/SCHP/networks/__pycache__/__init__.cpython-39.pyc
CHANGED
Binary files a/model/SCHP/networks/__pycache__/__init__.cpython-39.pyc and b/model/SCHP/networks/__pycache__/__init__.cpython-39.pyc differ
|
|
model/SCHP/utils/__pycache__/transforms.cpython-39.pyc
CHANGED
Binary files a/model/SCHP/utils/__pycache__/transforms.cpython-39.pyc and b/model/SCHP/utils/__pycache__/transforms.cpython-39.pyc differ
|
|