CatVTON / densepose /data /video /video_keyframe_dataset.py
zhengchong's picture
chore: Update dependencies and code structure
6eb1d7d
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
# pyre-unsafe
import csv
import logging
import numpy as np
from typing import Any, Callable, Dict, List, Optional, Union
import av
import torch
from torch.utils.data.dataset import Dataset
from detectron2.utils.file_io import PathManager
from ..utils import maybe_prepend_base_path
from .frame_selector import FrameSelector, FrameTsList
FrameList = List[av.frame.Frame] # pyre-ignore[16]
FrameTransform = Callable[[torch.Tensor], torch.Tensor]
def list_keyframes(video_fpath: str, video_stream_idx: int = 0) -> FrameTsList:
"""
Traverses all keyframes of a video file. Returns a list of keyframe
timestamps. Timestamps are counts in timebase units.
Args:
video_fpath (str): Video file path
video_stream_idx (int): Video stream index (default: 0)
Returns:
List[int]: list of keyframe timestaps (timestamp is a count in timebase
units)
"""
try:
with PathManager.open(video_fpath, "rb") as io:
# pyre-fixme[16]: Module `av` has no attribute `open`.
container = av.open(io, mode="r")
stream = container.streams.video[video_stream_idx]
keyframes = []
pts = -1
# Note: even though we request forward seeks for keyframes, sometimes
# a keyframe in backwards direction is returned. We introduce tolerance
# as a max count of ignored backward seeks
tolerance_backward_seeks = 2
while True:
try:
container.seek(pts + 1, backward=False, any_frame=False, stream=stream)
except av.AVError as e:
# the exception occurs when the video length is exceeded,
# we then return whatever data we've already collected
logger = logging.getLogger(__name__)
logger.debug(
f"List keyframes: Error seeking video file {video_fpath}, "
f"video stream {video_stream_idx}, pts {pts + 1}, AV error: {e}"
)
return keyframes
except OSError as e:
logger = logging.getLogger(__name__)
logger.warning(
f"List keyframes: Error seeking video file {video_fpath}, "
f"video stream {video_stream_idx}, pts {pts + 1}, OS error: {e}"
)
return []
packet = next(container.demux(video=video_stream_idx))
if packet.pts is not None and packet.pts <= pts:
logger = logging.getLogger(__name__)
logger.warning(
f"Video file {video_fpath}, stream {video_stream_idx}: "
f"bad seek for packet {pts + 1} (got packet {packet.pts}), "
f"tolerance {tolerance_backward_seeks}."
)
tolerance_backward_seeks -= 1
if tolerance_backward_seeks == 0:
return []
pts += 1
continue
tolerance_backward_seeks = 2
pts = packet.pts
if pts is None:
return keyframes
if packet.is_keyframe:
keyframes.append(pts)
return keyframes
except OSError as e:
logger = logging.getLogger(__name__)
logger.warning(
f"List keyframes: Error opening video file container {video_fpath}, " f"OS error: {e}"
)
except RuntimeError as e:
logger = logging.getLogger(__name__)
logger.warning(
f"List keyframes: Error opening video file container {video_fpath}, "
f"Runtime error: {e}"
)
return []
def read_keyframes(
video_fpath: str, keyframes: FrameTsList, video_stream_idx: int = 0
) -> FrameList: # pyre-ignore[11]
"""
Reads keyframe data from a video file.
Args:
video_fpath (str): Video file path
keyframes (List[int]): List of keyframe timestamps (as counts in
timebase units to be used in container seek operations)
video_stream_idx (int): Video stream index (default: 0)
Returns:
List[Frame]: list of frames that correspond to the specified timestamps
"""
try:
with PathManager.open(video_fpath, "rb") as io:
# pyre-fixme[16]: Module `av` has no attribute `open`.
container = av.open(io)
stream = container.streams.video[video_stream_idx]
frames = []
for pts in keyframes:
try:
container.seek(pts, any_frame=False, stream=stream)
frame = next(container.decode(video=0))
frames.append(frame)
except av.AVError as e:
logger = logging.getLogger(__name__)
logger.warning(
f"Read keyframes: Error seeking video file {video_fpath}, "
f"video stream {video_stream_idx}, pts {pts}, AV error: {e}"
)
container.close()
return frames
except OSError as e:
logger = logging.getLogger(__name__)
logger.warning(
f"Read keyframes: Error seeking video file {video_fpath}, "
f"video stream {video_stream_idx}, pts {pts}, OS error: {e}"
)
container.close()
return frames
except StopIteration:
logger = logging.getLogger(__name__)
logger.warning(
f"Read keyframes: Error decoding frame from {video_fpath}, "
f"video stream {video_stream_idx}, pts {pts}"
)
container.close()
return frames
container.close()
return frames
except OSError as e:
logger = logging.getLogger(__name__)
logger.warning(
f"Read keyframes: Error opening video file container {video_fpath}, OS error: {e}"
)
except RuntimeError as e:
logger = logging.getLogger(__name__)
logger.warning(
f"Read keyframes: Error opening video file container {video_fpath}, Runtime error: {e}"
)
return []
def video_list_from_file(video_list_fpath: str, base_path: Optional[str] = None):
"""
Create a list of paths to video files from a text file.
Args:
video_list_fpath (str): path to a plain text file with the list of videos
base_path (str): base path for entries from the video list (default: None)
"""
video_list = []
with PathManager.open(video_list_fpath, "r") as io:
for line in io:
video_list.append(maybe_prepend_base_path(base_path, str(line.strip())))
return video_list
def read_keyframe_helper_data(fpath: str):
"""
Read keyframe data from a file in CSV format: the header should contain
"video_id" and "keyframes" fields. Value specifications are:
video_id: int
keyframes: list(int)
Example of contents:
video_id,keyframes
2,"[1,11,21,31,41,51,61,71,81]"
Args:
fpath (str): File containing keyframe data
Return:
video_id_to_keyframes (dict: int -> list(int)): for a given video ID it
contains a list of keyframes for that video
"""
video_id_to_keyframes = {}
try:
with PathManager.open(fpath, "r") as io:
csv_reader = csv.reader(io)
header = next(csv_reader)
video_id_idx = header.index("video_id")
keyframes_idx = header.index("keyframes")
for row in csv_reader:
video_id = int(row[video_id_idx])
assert (
video_id not in video_id_to_keyframes
), f"Duplicate keyframes entry for video {fpath}"
video_id_to_keyframes[video_id] = (
[int(v) for v in row[keyframes_idx][1:-1].split(",")]
if len(row[keyframes_idx]) > 2
else []
)
except Exception as e:
logger = logging.getLogger(__name__)
logger.warning(f"Error reading keyframe helper data from {fpath}: {e}")
return video_id_to_keyframes
class VideoKeyframeDataset(Dataset):
"""
Dataset that provides keyframes for a set of videos.
"""
_EMPTY_FRAMES = torch.empty((0, 3, 1, 1))
def __init__(
self,
video_list: List[str],
category_list: Union[str, List[str], None] = None,
frame_selector: Optional[FrameSelector] = None,
transform: Optional[FrameTransform] = None,
keyframe_helper_fpath: Optional[str] = None,
):
"""
Dataset constructor
Args:
video_list (List[str]): list of paths to video files
category_list (Union[str, List[str], None]): list of animal categories for each
video file. If it is a string, or None, this applies to all videos
frame_selector (Callable: KeyFrameList -> KeyFrameList):
selects keyframes to process, keyframes are given by
packet timestamps in timebase counts. If None, all keyframes
are selected (default: None)
transform (Callable: torch.Tensor -> torch.Tensor):
transforms a batch of RGB images (tensors of size [B, 3, H, W]),
returns a tensor of the same size. If None, no transform is
applied (default: None)
"""
if type(category_list) is list:
self.category_list = category_list
else:
self.category_list = [category_list] * len(video_list)
assert len(video_list) == len(
self.category_list
), "length of video and category lists must be equal"
self.video_list = video_list
self.frame_selector = frame_selector
self.transform = transform
self.keyframe_helper_data = (
read_keyframe_helper_data(keyframe_helper_fpath)
if keyframe_helper_fpath is not None
else None
)
def __getitem__(self, idx: int) -> Dict[str, Any]:
"""
Gets selected keyframes from a given video
Args:
idx (int): video index in the video list file
Returns:
A dictionary containing two keys:
images (torch.Tensor): tensor of size [N, H, W, 3] or of size
defined by the transform that contains keyframes data
categories (List[str]): categories of the frames
"""
categories = [self.category_list[idx]]
fpath = self.video_list[idx]
keyframes = (
list_keyframes(fpath)
if self.keyframe_helper_data is None or idx not in self.keyframe_helper_data
else self.keyframe_helper_data[idx]
)
transform = self.transform
frame_selector = self.frame_selector
if not keyframes:
return {"images": self._EMPTY_FRAMES, "categories": []}
if frame_selector is not None:
keyframes = frame_selector(keyframes)
frames = read_keyframes(fpath, keyframes)
if not frames:
return {"images": self._EMPTY_FRAMES, "categories": []}
frames = np.stack([frame.to_rgb().to_ndarray() for frame in frames])
frames = torch.as_tensor(frames, device=torch.device("cpu"))
frames = frames[..., [2, 1, 0]] # RGB -> BGR
frames = frames.permute(0, 3, 1, 2).float() # NHWC -> NCHW
if transform is not None:
frames = transform(frames)
return {"images": frames, "categories": categories}
def __len__(self):
return len(self.video_list)