Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,011 Bytes
6a6227f 905c952 6a6227f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import inspect
import os
from typing import Union
import PIL
import numpy as np
import torch
import tqdm
from accelerate import load_checkpoint_in_model
from diffusers import AutoencoderKL, DDIMScheduler, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion.safety_checker import \
StableDiffusionSafetyChecker
from diffusers.utils.torch_utils import randn_tensor
from huggingface_hub import snapshot_download
from transformers import CLIPImageProcessor
from model.attn_processor import SkipAttnProcessor
from model.utils import get_trainable_module, init_adapter
from utils import (compute_vae_encodings, numpy_to_pil, prepare_image,
prepare_mask_image, resize_and_crop, resize_and_padding)
class CatVTONPipeline:
def __init__(
self,
base_ckpt,
attn_ckpt,
attn_ckpt_version="mix",
weight_dtype=torch.float32,
device='cuda',
compile=False,
skip_safety_check=False,
use_tf32=True,
):
self.device = device
self.weight_dtype = weight_dtype
self.skip_safety_check = skip_safety_check
self.noise_scheduler = DDIMScheduler.from_pretrained(base_ckpt, subfolder="scheduler")
self.vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtype=weight_dtype)
if not skip_safety_check:
self.feature_extractor = CLIPImageProcessor.from_pretrained(base_ckpt, subfolder="feature_extractor")
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(base_ckpt, subfolder="safety_checker").to(device, dtype=weight_dtype)
self.unet = UNet2DConditionModel.from_pretrained(base_ckpt, subfolder="unet").to(device, dtype=weight_dtype)
init_adapter(self.unet, cross_attn_cls=SkipAttnProcessor) # Skip Cross-Attention
self.attn_modules = get_trainable_module(self.unet, "attention")
self.auto_attn_ckpt_load(attn_ckpt, attn_ckpt_version)
# Pytorch 2.0 Compile
if compile:
self.unet = torch.compile(self.unet)
self.vae = torch.compile(self.vae, mode="reduce-overhead")
# Enable TF32 for faster training on Ampere GPUs (A100 and RTX 30 series).
if use_tf32:
torch.set_float32_matmul_precision("high")
torch.backends.cuda.matmul.allow_tf32 = True
def auto_attn_ckpt_load(self, attn_ckpt, version):
sub_folder = {
"mix": "mix-48k-1024",
"vitonhd": "vitonhd-16k-512",
"dresscode": "dresscode-16k-512",
}[version]
if os.path.exists(attn_ckpt):
load_checkpoint_in_model(self.attn_modules, os.path.join(attn_ckpt, sub_folder, 'attention'))
else:
repo_path = snapshot_download(repo_id=attn_ckpt)
print(f"Downloaded {attn_ckpt} to {repo_path}")
load_checkpoint_in_model(self.attn_modules, os.path.join(repo_path, sub_folder, 'attention'))
def run_safety_checker(self, image):
if self.safety_checker is None:
has_nsfw_concept = None
else:
safety_checker_input = self.feature_extractor(image, return_tensors="pt").to(self.device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(self.weight_dtype)
)
return image, has_nsfw_concept
def check_inputs(self, image, condition_image, mask, width, height):
if isinstance(image, torch.Tensor) and isinstance(condition_image, torch.Tensor) and isinstance(mask, torch.Tensor):
return image, condition_image, mask
assert image.size == mask.size, "Image and mask must have the same size"
image = resize_and_crop(image, (width, height))
mask = resize_and_crop(mask, (width, height))
condition_image = resize_and_padding(condition_image, (width, height))
return image, condition_image, mask
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(
inspect.signature(self.noise_scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.noise_scheduler.step).parameters.keys()
)
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
@torch.no_grad()
def __call__(
self,
image: Union[PIL.Image.Image, torch.Tensor],
condition_image: Union[PIL.Image.Image, torch.Tensor],
mask: Union[PIL.Image.Image, torch.Tensor],
num_inference_steps: int = 50,
guidance_scale: float = 2.5,
height: int = 1024,
width: int = 768,
generator=None,
eta=1.0,
**kwargs
):
concat_dim = -2 # FIXME: y axis concat
# Prepare inputs to Tensor
image, condition_image, mask = self.check_inputs(image, condition_image, mask, width, height)
image = prepare_image(image).to(self.device, dtype=self.weight_dtype)
condition_image = prepare_image(condition_image).to(self.device, dtype=self.weight_dtype)
mask = prepare_mask_image(mask).to(self.device, dtype=self.weight_dtype)
# Mask image
masked_image = image * (mask < 0.5)
# VAE encoding
masked_latent = compute_vae_encodings(masked_image, self.vae)
condition_latent = compute_vae_encodings(condition_image, self.vae)
mask_latent = torch.nn.functional.interpolate(mask, size=masked_latent.shape[-2:], mode="nearest")
del image, mask, condition_image
# Concatenate latents
masked_latent_concat = torch.cat([masked_latent, condition_latent], dim=concat_dim)
mask_latent_concat = torch.cat([mask_latent, torch.zeros_like(mask_latent)], dim=concat_dim)
# Prepare noise
latents = randn_tensor(
masked_latent_concat.shape,
generator=generator,
device=masked_latent_concat.device,
dtype=self.weight_dtype,
)
# Prepare timesteps
self.noise_scheduler.set_timesteps(num_inference_steps, device=self.device)
timesteps = self.noise_scheduler.timesteps
latents = latents * self.noise_scheduler.init_noise_sigma
# Classifier-Free Guidance
if do_classifier_free_guidance := (guidance_scale > 1.0):
masked_latent_concat = torch.cat(
[
torch.cat([masked_latent, torch.zeros_like(condition_latent)], dim=concat_dim),
masked_latent_concat,
]
)
mask_latent_concat = torch.cat([mask_latent_concat] * 2)
# Denoising loop
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
num_warmup_steps = (len(timesteps) - num_inference_steps * self.noise_scheduler.order)
with tqdm.tqdm(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
non_inpainting_latent_model_input = (torch.cat([latents] * 2) if do_classifier_free_guidance else latents)
non_inpainting_latent_model_input = self.noise_scheduler.scale_model_input(non_inpainting_latent_model_input, t)
# prepare the input for the inpainting model
inpainting_latent_model_input = torch.cat([non_inpainting_latent_model_input, mask_latent_concat, masked_latent_concat], dim=1)
# predict the noise residual
noise_pred= self.unet(
inpainting_latent_model_input,
t.to(self.device),
encoder_hidden_states=None, # FIXME
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.noise_scheduler.step(
noise_pred, t, latents, **extra_step_kwargs
).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps
and (i + 1) % self.noise_scheduler.order == 0
):
progress_bar.update()
# Decode the final latents
latents = latents.split(latents.shape[concat_dim] // 2, dim=concat_dim)[0]
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents.to(self.device, dtype=self.weight_dtype)).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
image = numpy_to_pil(image)
# Safety Check
if not self.skip_safety_check:
current_script_directory = os.path.dirname(os.path.realpath(__file__))
nsfw_image = os.path.join(os.path.dirname(current_script_directory), 'resource', 'img', 'NSFW.jpg')
nsfw_image = PIL.Image.open(nsfw_image).resize(image[0].size)
image_np = np.array(image)
_, has_nsfw_concept = self.run_safety_checker(image=image_np)
for i, not_safe in enumerate(has_nsfw_concept):
if not_safe:
image[i] = nsfw_image
return image
class CatVTONPix2PixPipeline(CatVTONPipeline):
def auto_attn_ckpt_load(self, attn_ckpt, version):
# TODO: Temperal fix for the model version
if os.path.exists(attn_ckpt):
load_checkpoint_in_model(self.attn_modules, os.path.join(attn_ckpt, version, 'attention'))
else:
repo_path = snapshot_download(repo_id=attn_ckpt)
print(f"Downloaded {attn_ckpt} to {repo_path}")
load_checkpoint_in_model(self.attn_modules, os.path.join(repo_path, version, 'attention'))
def check_inputs(self, image, condition_image, width, height):
if isinstance(image, torch.Tensor) and isinstance(condition_image, torch.Tensor) and isinstance(torch.Tensor):
return image, condition_image
image = resize_and_crop(image, (width, height))
condition_image = resize_and_padding(condition_image, (width, height))
return image, condition_image
@torch.no_grad()
def __call__(
self,
image: Union[PIL.Image.Image, torch.Tensor],
condition_image: Union[PIL.Image.Image, torch.Tensor],
num_inference_steps: int = 50,
guidance_scale: float = 2.5,
height: int = 1024,
width: int = 768,
generator=None,
eta=1.0,
**kwargs
):
concat_dim = -1
# Prepare inputs to Tensor
image, condition_image = self.check_inputs(image, condition_image, width, height)
image = prepare_image(image).to(self.device, dtype=self.weight_dtype)
condition_image = prepare_image(condition_image).to(self.device, dtype=self.weight_dtype)
# VAE encoding
image_latent = compute_vae_encodings(image, self.vae)
condition_latent = compute_vae_encodings(condition_image, self.vae)
del image, condition_image
# Concatenate latents
condition_latent_concat = torch.cat([image_latent, condition_latent], dim=concat_dim)
# Prepare noise
latents = randn_tensor(
condition_latent_concat.shape,
generator=generator,
device=condition_latent_concat.device,
dtype=self.weight_dtype,
)
# Prepare timesteps
self.noise_scheduler.set_timesteps(num_inference_steps, device=self.device)
timesteps = self.noise_scheduler.timesteps
latents = latents * self.noise_scheduler.init_noise_sigma
# Classifier-Free Guidance
if do_classifier_free_guidance := (guidance_scale > 1.0):
condition_latent_concat = torch.cat(
[
torch.cat([image_latent, torch.zeros_like(condition_latent)], dim=concat_dim),
condition_latent_concat,
]
)
# Denoising loop
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
num_warmup_steps = (len(timesteps) - num_inference_steps * self.noise_scheduler.order)
with tqdm.tqdm(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = (torch.cat([latents] * 2) if do_classifier_free_guidance else latents)
latent_model_input = self.noise_scheduler.scale_model_input(latent_model_input, t)
# prepare the input for the inpainting model
p2p_latent_model_input = torch.cat([latent_model_input, condition_latent_concat], dim=1)
# predict the noise residual
noise_pred= self.unet(
p2p_latent_model_input,
t.to(self.device),
encoder_hidden_states=None,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = self.noise_scheduler.step(
noise_pred, t, latents, **extra_step_kwargs
).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps
and (i + 1) % self.noise_scheduler.order == 0
):
progress_bar.update()
# Decode the final latents
latents = latents.split(latents.shape[concat_dim] // 2, dim=concat_dim)[0]
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents.to(self.device, dtype=self.weight_dtype)).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
image = numpy_to_pil(image)
# Safety Check
if not self.skip_safety_check:
current_script_directory = os.path.dirname(os.path.realpath(__file__))
nsfw_image = os.path.join(os.path.dirname(current_script_directory), 'resource', 'img', 'NSFW.jpg')
nsfw_image = PIL.Image.open(nsfw_image).resize(image[0].size)
image_np = np.array(image)
_, has_nsfw_concept = self.run_safety_checker(image=image_np)
for i, not_safe in enumerate(has_nsfw_concept):
if not_safe:
image[i] = nsfw_image
return image
|