File size: 16,011 Bytes
6a6227f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
905c952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a6227f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import inspect
import os
from typing import Union

import PIL
import numpy as np
import torch
import tqdm
from accelerate import load_checkpoint_in_model
from diffusers import AutoencoderKL, DDIMScheduler, UNet2DConditionModel
from diffusers.pipelines.stable_diffusion.safety_checker import \
    StableDiffusionSafetyChecker
from diffusers.utils.torch_utils import randn_tensor
from huggingface_hub import snapshot_download
from transformers import CLIPImageProcessor

from model.attn_processor import SkipAttnProcessor
from model.utils import get_trainable_module, init_adapter
from utils import (compute_vae_encodings, numpy_to_pil, prepare_image,
                   prepare_mask_image, resize_and_crop, resize_and_padding)


class CatVTONPipeline:
    def __init__(
        self, 
        base_ckpt, 
        attn_ckpt, 
        attn_ckpt_version="mix",
        weight_dtype=torch.float32,
        device='cuda',
        compile=False,
        skip_safety_check=False,
        use_tf32=True,
    ):
        self.device = device
        self.weight_dtype = weight_dtype
        self.skip_safety_check = skip_safety_check

        self.noise_scheduler = DDIMScheduler.from_pretrained(base_ckpt, subfolder="scheduler")
        self.vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtype=weight_dtype)
        if not skip_safety_check:
            self.feature_extractor = CLIPImageProcessor.from_pretrained(base_ckpt, subfolder="feature_extractor")
            self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(base_ckpt, subfolder="safety_checker").to(device, dtype=weight_dtype)
        self.unet = UNet2DConditionModel.from_pretrained(base_ckpt, subfolder="unet").to(device, dtype=weight_dtype)
        init_adapter(self.unet, cross_attn_cls=SkipAttnProcessor)  # Skip Cross-Attention
        self.attn_modules = get_trainable_module(self.unet, "attention")
        self.auto_attn_ckpt_load(attn_ckpt, attn_ckpt_version)
        # Pytorch 2.0 Compile
        if compile:
            self.unet = torch.compile(self.unet)
            self.vae = torch.compile(self.vae, mode="reduce-overhead")
            
        # Enable TF32 for faster training on Ampere GPUs (A100 and RTX 30 series).
        if use_tf32:
            torch.set_float32_matmul_precision("high")
            torch.backends.cuda.matmul.allow_tf32 = True

    def auto_attn_ckpt_load(self, attn_ckpt, version):
        sub_folder = {
            "mix": "mix-48k-1024",
            "vitonhd": "vitonhd-16k-512",
            "dresscode": "dresscode-16k-512",
        }[version]
        if os.path.exists(attn_ckpt):
            load_checkpoint_in_model(self.attn_modules, os.path.join(attn_ckpt, sub_folder, 'attention'))
        else:
            repo_path = snapshot_download(repo_id=attn_ckpt)
            print(f"Downloaded {attn_ckpt} to {repo_path}")
            load_checkpoint_in_model(self.attn_modules, os.path.join(repo_path, sub_folder, 'attention'))
            
    def run_safety_checker(self, image):
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            safety_checker_input = self.feature_extractor(image, return_tensors="pt").to(self.device)
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(self.weight_dtype)
            )
        return image, has_nsfw_concept
    
    def check_inputs(self, image, condition_image, mask, width, height):
        if isinstance(image, torch.Tensor) and isinstance(condition_image, torch.Tensor) and isinstance(mask, torch.Tensor):
            return image, condition_image, mask
        assert image.size == mask.size, "Image and mask must have the same size"
        image = resize_and_crop(image, (width, height))
        mask = resize_and_crop(mask, (width, height))
        condition_image = resize_and_padding(condition_image, (width, height))
        return image, condition_image, mask
    
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(
            inspect.signature(self.noise_scheduler.step).parameters.keys()
        )
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(
            inspect.signature(self.noise_scheduler.step).parameters.keys()
        )
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    @torch.no_grad()
    def __call__(
        self, 
        image: Union[PIL.Image.Image, torch.Tensor],
        condition_image: Union[PIL.Image.Image, torch.Tensor],
        mask: Union[PIL.Image.Image, torch.Tensor],
        num_inference_steps: int = 50,
        guidance_scale: float = 2.5,
        height: int = 1024,
        width: int = 768,
        generator=None,
        eta=1.0,
        **kwargs
    ):
        concat_dim = -2  # FIXME: y axis concat
        # Prepare inputs to Tensor
        image, condition_image, mask = self.check_inputs(image, condition_image, mask, width, height)
        image = prepare_image(image).to(self.device, dtype=self.weight_dtype)
        condition_image = prepare_image(condition_image).to(self.device, dtype=self.weight_dtype)
        mask = prepare_mask_image(mask).to(self.device, dtype=self.weight_dtype)
        # Mask image
        masked_image = image * (mask < 0.5)
        # VAE encoding
        masked_latent = compute_vae_encodings(masked_image, self.vae)
        condition_latent = compute_vae_encodings(condition_image, self.vae)
        mask_latent = torch.nn.functional.interpolate(mask, size=masked_latent.shape[-2:], mode="nearest")
        del image, mask, condition_image
        # Concatenate latents
        masked_latent_concat = torch.cat([masked_latent, condition_latent], dim=concat_dim)
        mask_latent_concat = torch.cat([mask_latent, torch.zeros_like(mask_latent)], dim=concat_dim)
        # Prepare noise
        latents = randn_tensor(
            masked_latent_concat.shape,
            generator=generator,
            device=masked_latent_concat.device,
            dtype=self.weight_dtype,
        )
        # Prepare timesteps
        self.noise_scheduler.set_timesteps(num_inference_steps, device=self.device)
        timesteps = self.noise_scheduler.timesteps
        latents = latents * self.noise_scheduler.init_noise_sigma
        # Classifier-Free Guidance
        if do_classifier_free_guidance := (guidance_scale > 1.0):
            masked_latent_concat = torch.cat(
                [
                    torch.cat([masked_latent, torch.zeros_like(condition_latent)], dim=concat_dim),
                    masked_latent_concat,
                ]
            )
            mask_latent_concat = torch.cat([mask_latent_concat] * 2)

        # Denoising loop
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
        num_warmup_steps = (len(timesteps) - num_inference_steps * self.noise_scheduler.order)
        with tqdm.tqdm(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                non_inpainting_latent_model_input = (torch.cat([latents] * 2) if do_classifier_free_guidance else latents)
                non_inpainting_latent_model_input = self.noise_scheduler.scale_model_input(non_inpainting_latent_model_input, t)
                # prepare the input for the inpainting model
                inpainting_latent_model_input = torch.cat([non_inpainting_latent_model_input, mask_latent_concat, masked_latent_concat], dim=1)
                # predict the noise residual
                noise_pred= self.unet(
                    inpainting_latent_model_input,
                    t.to(self.device),
                    encoder_hidden_states=None, # FIXME
                    return_dict=False,
                )[0]
                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (
                        noise_pred_text - noise_pred_uncond
                    )
                # compute the previous noisy sample x_t -> x_t-1
                latents = self.noise_scheduler.step(
                    noise_pred, t, latents, **extra_step_kwargs
                ).prev_sample
                # call the callback, if provided
                if i == len(timesteps) - 1 or (
                    (i + 1) > num_warmup_steps
                    and (i + 1) % self.noise_scheduler.order == 0
                ):
                    progress_bar.update()

        # Decode the final latents
        latents = latents.split(latents.shape[concat_dim] // 2, dim=concat_dim)[0]
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents.to(self.device, dtype=self.weight_dtype)).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        image = numpy_to_pil(image)
        
        # Safety Check
        if not self.skip_safety_check:
            current_script_directory = os.path.dirname(os.path.realpath(__file__))
            nsfw_image = os.path.join(os.path.dirname(current_script_directory), 'resource', 'img', 'NSFW.jpg')
            nsfw_image = PIL.Image.open(nsfw_image).resize(image[0].size)
            image_np = np.array(image)
            _, has_nsfw_concept = self.run_safety_checker(image=image_np)
            for i, not_safe in enumerate(has_nsfw_concept):
                if not_safe:
                    image[i] = nsfw_image
        return image


class CatVTONPix2PixPipeline(CatVTONPipeline):
    def auto_attn_ckpt_load(self, attn_ckpt, version):
        # TODO: Temperal fix for the model version
        if os.path.exists(attn_ckpt):
            load_checkpoint_in_model(self.attn_modules, os.path.join(attn_ckpt, version, 'attention'))
        else:
            repo_path = snapshot_download(repo_id=attn_ckpt)
            print(f"Downloaded {attn_ckpt} to {repo_path}")
            load_checkpoint_in_model(self.attn_modules, os.path.join(repo_path, version, 'attention'))
    
    def check_inputs(self, image, condition_image, width, height):
        if isinstance(image, torch.Tensor) and isinstance(condition_image, torch.Tensor) and isinstance(torch.Tensor):
            return image, condition_image
        image = resize_and_crop(image, (width, height))
        condition_image = resize_and_padding(condition_image, (width, height))
        return image, condition_image

    @torch.no_grad()
    def __call__(
        self, 
        image: Union[PIL.Image.Image, torch.Tensor],
        condition_image: Union[PIL.Image.Image, torch.Tensor],
        num_inference_steps: int = 50,
        guidance_scale: float = 2.5,
        height: int = 1024,
        width: int = 768,
        generator=None,
        eta=1.0,
        **kwargs
    ):
        concat_dim = -1
        # Prepare inputs to Tensor
        image, condition_image = self.check_inputs(image, condition_image, width, height)
        image = prepare_image(image).to(self.device, dtype=self.weight_dtype)
        condition_image = prepare_image(condition_image).to(self.device, dtype=self.weight_dtype)
        # VAE encoding
        image_latent = compute_vae_encodings(image, self.vae)
        condition_latent = compute_vae_encodings(condition_image, self.vae)
        del image, condition_image
        # Concatenate latents
        condition_latent_concat = torch.cat([image_latent, condition_latent], dim=concat_dim)
        # Prepare noise
        latents = randn_tensor(
            condition_latent_concat.shape,
            generator=generator,
            device=condition_latent_concat.device,
            dtype=self.weight_dtype,
        )
        # Prepare timesteps
        self.noise_scheduler.set_timesteps(num_inference_steps, device=self.device)
        timesteps = self.noise_scheduler.timesteps
        latents = latents * self.noise_scheduler.init_noise_sigma
        # Classifier-Free Guidance
        if do_classifier_free_guidance := (guidance_scale > 1.0):
            condition_latent_concat = torch.cat(
                [
                    torch.cat([image_latent, torch.zeros_like(condition_latent)], dim=concat_dim),
                    condition_latent_concat,
                ]
            )

        # Denoising loop
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
        num_warmup_steps = (len(timesteps) - num_inference_steps * self.noise_scheduler.order)
        with tqdm.tqdm(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = (torch.cat([latents] * 2) if do_classifier_free_guidance else latents)
                latent_model_input = self.noise_scheduler.scale_model_input(latent_model_input, t)
                # prepare the input for the inpainting model
                p2p_latent_model_input = torch.cat([latent_model_input, condition_latent_concat], dim=1)
                # predict the noise residual
                noise_pred= self.unet(
                    p2p_latent_model_input,
                    t.to(self.device),
                    encoder_hidden_states=None, 
                    return_dict=False,
                )[0]
                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (
                        noise_pred_text - noise_pred_uncond
                    )
                # compute the previous noisy sample x_t -> x_t-1
                latents = self.noise_scheduler.step(
                    noise_pred, t, latents, **extra_step_kwargs
                ).prev_sample
                # call the callback, if provided
                if i == len(timesteps) - 1 or (
                    (i + 1) > num_warmup_steps
                    and (i + 1) % self.noise_scheduler.order == 0
                ):
                    progress_bar.update()

        # Decode the final latents
        latents = latents.split(latents.shape[concat_dim] // 2, dim=concat_dim)[0]
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents.to(self.device, dtype=self.weight_dtype)).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        image = numpy_to_pil(image)
        
        # Safety Check
        if not self.skip_safety_check:
            current_script_directory = os.path.dirname(os.path.realpath(__file__))
            nsfw_image = os.path.join(os.path.dirname(current_script_directory), 'resource', 'img', 'NSFW.jpg')
            nsfw_image = PIL.Image.open(nsfw_image).resize(image[0].size)
            image_np = np.array(image)
            _, has_nsfw_concept = self.run_safety_checker(image=image_np)
            for i, not_safe in enumerate(has_nsfw_concept):
                if not_safe:
                    image[i] = nsfw_image
        return image