zhangtao commited on
Commit
85d8949
·
1 Parent(s): bb61c2b

继续测试

Browse files
Files changed (2) hide show
  1. Dockerfile +2 -0
  2. app.py +9 -4
Dockerfile CHANGED
@@ -13,4 +13,6 @@ COPY . .
13
 
14
  RUN wget https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-GGUF/resolve/main/neuralhermes-2.5-mistral-7b.Q5_K_M.gguf?download=true -O neuralhermes-2.5-mistral-7b.Q5_K_M.gguf
15
 
 
 
16
  CMD ["python", "app.py"]
 
13
 
14
  RUN wget https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-GGUF/resolve/main/neuralhermes-2.5-mistral-7b.Q5_K_M.gguf?download=true -O neuralhermes-2.5-mistral-7b.Q5_K_M.gguf
15
 
16
+ ENV MPLCONFIGDIR /code/matplotlib/
17
+
18
  CMD ["python", "app.py"]
app.py CHANGED
@@ -1,5 +1,6 @@
1
  import gradio as gr
2
  from llama_cpp import Llama
 
3
  llm = Llama(model_path="./neuralhermes-2.5-mistral-7b.Q5_K_M.gguf",
4
  n_ctx=32768,
5
  n_threads=2,
@@ -7,18 +8,22 @@ llm = Llama(model_path="./neuralhermes-2.5-mistral-7b.Q5_K_M.gguf",
7
 
8
 
9
  def chat_completion(messages, history, system_prompt):
10
- messages = [{"role": "system", "content": system_prompt}]
 
11
  for human, assistant in history:
12
  messages.append({"role": "user", "content": human})
13
  messages.append({"role": "assistant", "content": assistant})
14
  messages.append({"role": "user", "content": messages})
15
- print(messages)
 
 
16
  response = llm.create_chat_completion(
17
  messages=messages,
18
  stream=False
19
  )
20
- print(response)
21
- return response
 
22
  # partial_message = ""
23
  # for chunk in response:
24
  # if len(chunk['choices'][0]['delta']) != 0:
 
1
  import gradio as gr
2
  from llama_cpp import Llama
3
+ import json
4
  llm = Llama(model_path="./neuralhermes-2.5-mistral-7b.Q5_K_M.gguf",
5
  n_ctx=32768,
6
  n_threads=2,
 
8
 
9
 
10
  def chat_completion(messages, history, system_prompt):
11
+ # messages = [{"role": "system", "content": system_prompt}]
12
+ messages = []
13
  for human, assistant in history:
14
  messages.append({"role": "user", "content": human})
15
  messages.append({"role": "assistant", "content": assistant})
16
  messages.append({"role": "user", "content": messages})
17
+ message_str = json.dumps(messages, ensure_ascii=False, indent=4)
18
+ gr.Info(message_str)
19
+
20
  response = llm.create_chat_completion(
21
  messages=messages,
22
  stream=False
23
  )
24
+ response_str = json.dumps(response, ensure_ascii=False, indent=4)
25
+ gr.Info(response_str)
26
+ return message_str
27
  # partial_message = ""
28
  # for chunk in response:
29
  # if len(chunk['choices'][0]['delta']) != 0: