zhangtao
commited on
Commit
•
728ac62
1
Parent(s):
5b3edb5
增加中文翻译功能
Browse files- Dockerfile +2 -0
- app.py +82 -25
Dockerfile
CHANGED
@@ -7,6 +7,8 @@ WORKDIR /code
|
|
7 |
|
8 |
RUN wget https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-GGUF/resolve/main/neuralhermes-2.5-mistral-7b.Q5_K_M.gguf?download=true -O neuralhermes-2.5-mistral-7b.Q5_K_M.gguf
|
9 |
|
|
|
|
|
10 |
COPY ./requirements.txt /code/requirements.txt
|
11 |
|
12 |
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
|
|
7 |
|
8 |
RUN wget https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-GGUF/resolve/main/neuralhermes-2.5-mistral-7b.Q5_K_M.gguf?download=true -O neuralhermes-2.5-mistral-7b.Q5_K_M.gguf
|
9 |
|
10 |
+
RUN wget https://huggingface.co/zhangtao103239/Qwen-1.8B-GGUF/resolve/main/qwen-1.8b-q5_k_m.gguf?download=true -O qwen-1.8b-q5_k_m.gguf
|
11 |
+
|
12 |
COPY ./requirements.txt /code/requirements.txt
|
13 |
|
14 |
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
app.py
CHANGED
@@ -1,45 +1,102 @@
|
|
1 |
import gradio as gr
|
2 |
from llama_cpp import Llama
|
3 |
import json
|
|
|
4 |
llm = Llama(model_path="./neuralhermes-2.5-mistral-7b.Q5_K_M.gguf",
|
5 |
-
n_ctx=
|
6 |
n_threads=2,
|
7 |
chat_format="chatml")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
messages_prompts = [{"role": "system", "content": system_prompt}]
|
12 |
for human, assistant in history:
|
13 |
messages_prompts.append({"role": "user", "content": human})
|
14 |
messages_prompts.append({"role": "assistant", "content": assistant})
|
15 |
-
messages_prompts.append({"role": "user", "content":
|
16 |
response = llm.create_chat_completion(
|
17 |
messages=messages_prompts,
|
18 |
stream=False
|
19 |
)
|
20 |
print(json.dumps(response, ensure_ascii=False, indent=2))
|
21 |
-
return response['choices'][0]['content']
|
22 |
|
23 |
|
24 |
-
def chat_stream_completion(
|
25 |
messages_prompts = [{"role": "system", "content": system_prompt}]
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from llama_cpp import Llama
|
3 |
import json
|
4 |
+
import time
|
5 |
llm = Llama(model_path="./neuralhermes-2.5-mistral-7b.Q5_K_M.gguf",
|
6 |
+
n_ctx=1024,
|
7 |
n_threads=2,
|
8 |
chat_format="chatml")
|
9 |
+
llm_for_translate = Llama(model_path="./qwen-1.8b-q5_k_m.gguf",
|
10 |
+
n_ctx=1024,
|
11 |
+
n_threads=2,
|
12 |
+
chat_format="chatml")
|
13 |
+
|
14 |
+
chi_eng_dict = []
|
15 |
+
|
16 |
|
17 |
+
def get_dict_result(original_text):
|
18 |
+
for d in chi_eng_dict:
|
19 |
+
if d[0] == original_text:
|
20 |
+
return d[1]
|
21 |
+
elif d[1] == original_text:
|
22 |
+
return d[0]
|
23 |
+
return None
|
24 |
|
25 |
+
def stream_translate_into(message, language='English'):
|
26 |
+
return llm.create_chat_completion(
|
27 |
+
messages=[{"role": "system", "content": f"Translate words into {language}. Regardless the meanning!"},
|
28 |
+
{"role": "user", "content": f"'{message}'"}],
|
29 |
+
stream=True,
|
30 |
+
stop=['\n\n']
|
31 |
+
)
|
32 |
+
|
33 |
+
def chat_completion(message, history, system_prompt):
|
34 |
messages_prompts = [{"role": "system", "content": system_prompt}]
|
35 |
for human, assistant in history:
|
36 |
messages_prompts.append({"role": "user", "content": human})
|
37 |
messages_prompts.append({"role": "assistant", "content": assistant})
|
38 |
+
messages_prompts.append({"role": "user", "content": message})
|
39 |
response = llm.create_chat_completion(
|
40 |
messages=messages_prompts,
|
41 |
stream=False
|
42 |
)
|
43 |
print(json.dumps(response, ensure_ascii=False, indent=2))
|
44 |
+
return response['choices'][0]['message']['content']
|
45 |
|
46 |
|
47 |
+
def chat_stream_completion(message, history, system_prompt, translate_check):
|
48 |
messages_prompts = [{"role": "system", "content": system_prompt}]
|
49 |
+
if translate_check:
|
50 |
+
if len(history) > 0:
|
51 |
+
for human, assistant in history:
|
52 |
+
human_repl = get_dict_result(human)
|
53 |
+
assistant_repl = get_dict_result(assistant)
|
54 |
+
if human_repl is None or assistant_repl is None:
|
55 |
+
print(chi_eng_dict)
|
56 |
+
raise gr.Error("历史信息缺少翻译字典,请勿中途修改翻译功能!")
|
57 |
+
messages_prompts.append({"role": "user", "content": human_repl})
|
58 |
+
messages_prompts.append({"role": "assistant", "content": assistant_repl})
|
59 |
+
message_repl = ""
|
60 |
+
for chunk in stream_translate_into(message, language='English'):
|
61 |
+
if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]:
|
62 |
+
message_repl = message_repl + \
|
63 |
+
chunk['choices'][0]["delta"]["content"]
|
64 |
+
chi_eng_dict.append((message, message_repl))
|
65 |
+
messages_prompts.append({"role": "user", "content": message_repl})
|
66 |
+
print(messages_prompts)
|
67 |
+
response = llm.create_chat_completion(
|
68 |
+
messages=messages_prompts,
|
69 |
+
stream=False,
|
70 |
+
stop=['\n\n']
|
71 |
+
)
|
72 |
+
print(json.dumps(response, ensure_ascii=False, indent=2))
|
73 |
+
result = response['choices'][0]['message']['content']
|
74 |
+
result_repl = ""
|
75 |
+
for chunk in stream_translate_into(result, language='Chinese'):
|
76 |
+
if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]:
|
77 |
+
result_repl = result_repl + \
|
78 |
+
chunk['choices'][0]["delta"]["content"]
|
79 |
+
yield result_repl
|
80 |
+
chi_eng_dict.append((result, result_repl))
|
81 |
+
else:
|
82 |
+
for human, assistant in history:
|
83 |
+
messages_prompts.append({"role": "user", "content": human})
|
84 |
+
messages_prompts.append({"role": "assistant", "content": assistant})
|
85 |
+
messages_prompts.append({"role": "user", "content": message})
|
86 |
+
response = llm.create_chat_completion(
|
87 |
+
messages=messages_prompts,
|
88 |
+
stream=True
|
89 |
+
)
|
90 |
+
message_repl = ""
|
91 |
+
for chunk in response:
|
92 |
+
if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]:
|
93 |
+
message_repl = message_repl + \
|
94 |
+
chunk['choices'][0]["delta"]["content"]
|
95 |
+
yield message_repl
|
96 |
+
|
97 |
+
|
98 |
+
gr.ChatInterface(
|
99 |
+
chat_stream_completion,
|
100 |
+
additional_inputs=[gr.Textbox(
|
101 |
+
"You are helpful AI.", label="System Prompt"), gr.Checkbox(label="Translate?")]
|
102 |
+
).queue().launch(server_name="0.0.0.0")
|