File size: 6,722 Bytes
c4f1846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d813d5
 
c4f1846
 
 
 
 
1aa32b3
c4f1846
 
 
1aa32b3
 
c4f1846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab09b12
 
 
 
c4f1846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import time

import chromadb
from chromadb.utils import embedding_functions
from test.new import connect_to_llama
# from transformers import pipeline
import gradio as gr
import PyPDF2
import os
from chunkipy.text_chunker import split_by_sentences
import langid
from translate import Translator

chroma_client = chromadb.PersistentClient()
from test.llama import llama_local
working_dir = os.getcwd()
# checkpoint = f"{working_dir}/LaMini-T5-738M"
# model = pipeline('text2text-generation', model=checkpoint)
# input_prompt = """Answer the following question related reasoning answers from the following contexts that is given ..Don't generate answer from your data generate only from the provided contexts
# ..If the contexts doesn't provide an answer or isn't related to the question, respond with "there is no answer for the provided question"
# Question:"{}", 
# Contexts:"{}"
# Answer: 
#  """

def detect_and_translate_query(query, context, dest_language='en'):
    input_language, _ = langid.classify(query)
    if isinstance(context, list):
        context = " ".join(context)
    translator = Translator(to_lang=dest_language, from_lang=input_language)
    translated_query = translator.translate(query)
    translated_context = translator.translate(context)
    return translated_query, translated_context, input_language

def translate_response(response, source_language, dest_language):
    translator = Translator(to_lang=source_language, from_lang=dest_language)
    translated_response = translator.translate(response)
    print("translate_response "+str(translate_response))
    return translated_response
def create_multiple_db(path,collection,working_dir):
    filelist = os.listdir(path)
    print(filelist)
    data_pdfs = []
    metadata_buff=[]
    for file_n in filelist:
        with open(file_n, 'rb') as file:
            pdf_reader = PyPDF2.PdfReader(file)
            meta_data=dict(pdf_reader.metadata)
            print("De elmeta data before: ",meta_data)
            meta_data.update({"/Title":file_n})
            print("De elmeta data after: ", meta_data)
            metadata_buff.append(meta_data)
            data = ""
            for page_num in range(len(pdf_reader.pages)):
                data += pdf_reader.pages[page_num].extract_text()
            chunk = split_by_sentences(data)
            for i, chunks in enumerate(chunk):
                print(f"chunks{i}:", chunks)
            data_pdfs.append(chunk)
            file.close()
    os.chdir(working_dir)
    print(metadata_buff,"\n",len(metadata_buff))
    sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
    i = 0
    md_i=0
    for data in data_pdfs:
        print(data)
        collection.add(
            documents=data,
            embeddings=sentence_transformer_ef(data),
            ids=['id' + str(x + i) for x in range(len(data))],
            metadatas=[metadata_buff[md_i]for i in range(len(data))]
        )
        md_i+=1
        i += len(data)
    return "done"
 
def architecture_with_chroma(data):
    try:
        data_dict = eval(data)
    except:
        return "please enter a valid json (dict) to process"
    id = data_dict.get('id')
    if id is None:
        return "please enter an id to process on the prompt"
    id = "mate" + str(id)
    query = data_dict.get('query')
    if query is None or query == "":
        return "please enter a query to process"
    if(not os.path.exists(id)):
        return "sorry ,there is no directory for this client"
    collection = chroma_client.get_or_create_collection(name=id)
    results = collection.query(
        query_texts=[query],
        n_results=5
    )
    print(results," de elresults\n")
    context = results.get('documents')[0]
    results_metadata = list(results.get("metadatas")[0])
    results_documents = list(results.get("documents")[0])
    print(len(results_documents),"da el len bta3 elcontexts\n")
    print(results_documents)
    for i in range(5):
        results_documents[i] = f"In {results_metadata[i].get('/Title')}:" + results_documents[i]
    for data in results_documents:
        print(data)
    print(context)
    # generated_text = model(input_prompt.format(query+"? answer reasoning answers from the provided contexts only that is related and contains this information ", context), max_length=1024, do_sample=False)[0]['generated_text']
    # print(input_prompt)
    chroma_client.stop()
    translated_query, translated_context, input_language = detect_and_translate_query(query, context)
    print('translated_query '+str(translated_query))
    print('translated_context '+str(translated_context))
    results=connect_to_llama(query,results_documents)
    # results=llama_local(query,results_documents)
    translated_response = translate_response(results, input_language, dest_language='en')
    return translated_response
    # return results
    # return generated_text
def create(data):
    print(data)
    print(type(data))
    try:
        dict=eval(data)
    except:
        return "please enter a valid json (dict) to process"
    id=dict.get('id')
    if id==None :
        return "please enter an id to process on the prompt"
    id="mate"+str(id)
    if(not os.path.exists(id)):
        return "sorry ,there is no directory for this client"
    else:
        collection = chroma_client.get_or_create_collection(name=id)
        print(os.chdir(id))
        return create_multiple_db(os.getcwd(),collection,working_dir)+" making data for client"

def update(data):
    print(data)
    print(type(data))
    try:
        dict=eval(data)
    except:
        return "please enter a valid json (dict) to process"
    id=dict.get('id')
    if id==None :
        return "please enter an id to process on the prompt"
    id="mate"+str(dict.get('id'))
    if(not os.path.exists(id)):
        return "sorry ,there is no directory for this client"
    else:
        try:
            chroma_client.delete_collection(name=id)
        except error:
            pass
        collection=chroma_client.create_collection(name=id)
        print(os.chdir(id))
        return create_multiple_db(os.getcwd(),collection,working_dir)+"updating client embeddings"

iface = gr.Blocks()
with iface:
    name = gr.Textbox(label="Name")
    output = gr.Textbox(label="Output Box")
    process_btn = gr.Button("process")
    process_btn.click(fn=architecture_with_chroma, inputs=name, outputs=output, api_name="process")
    create_btn = gr.Button("create")
    create_btn.click(fn=create, inputs=name, outputs=output, api_name="create")
    update_btn = gr.Button("update")
    update_btn.click(fn=update, inputs=name, outputs=output, api_name="update")

iface.launch()