Charles Chan
commited on
Commit
·
de611e2
1
Parent(s):
1e21aa9
coding
Browse files
app.py
CHANGED
@@ -10,13 +10,20 @@ from opencc import OpenCC
|
|
10 |
# 原数据集是是繁体中文,为了调试方便,将其转换成简体中文之后使用
|
11 |
if "dataset_loaded" not in st.session_state:
|
12 |
st.session_state.dataset_loaded = False
|
|
|
|
|
13 |
if not st.session_state.dataset_loaded:
|
14 |
try:
|
15 |
with st.spinner("正在读取数据库..."):
|
16 |
converter = OpenCC('tw2s') # 'tw2s.json' 表示繁体中文到简体中文的转换
|
17 |
dataset = load_dataset("rorubyy/attack_on_titan_wiki_chinese")
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
st.success("数据库读取完成!")
|
|
|
20 |
except Exception as e:
|
21 |
st.error(f"读取数据集失败:{e}")
|
22 |
st.stop()
|
@@ -29,8 +36,9 @@ if not st.session_state.vector_created:
|
|
29 |
try:
|
30 |
with st.spinner("正在构建向量数据库..."):
|
31 |
embeddings = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
|
32 |
-
db = FAISS.from_texts(answer_list, embeddings)
|
33 |
st.success("向量数据库构建完成!")
|
|
|
34 |
except Exception as e:
|
35 |
st.error(f"向量数据库构建失败:{e}")
|
36 |
st.stop()
|
@@ -50,6 +58,7 @@ def answer_question(repo_id, temperature, max_length, question):
|
|
50 |
with st.spinner("正在初始化 Gemma 模型..."):
|
51 |
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": temperature, "max_length": max_length})
|
52 |
st.success("Gemma 模型初始化完成!")
|
|
|
53 |
st.session_state.repo_id = repo_id
|
54 |
st.session_state.temperature = temperature
|
55 |
st.session_state.max_length = max_length
|
@@ -72,12 +81,14 @@ def answer_question(repo_id, temperature, max_length, question):
|
|
72 |
print('prompt: ' + prompt)
|
73 |
|
74 |
st.success("本地数据集筛选完成!")
|
|
|
75 |
|
76 |
with st.spinner("正在生成答案..."):
|
77 |
answer = llm.invoke(prompt)
|
78 |
# 去掉 prompt 的内容
|
79 |
answer = answer.replace(prompt, "").strip()
|
80 |
st.success("答案已经生成!")
|
|
|
81 |
return {"prompt": prompt, "answer": answer}
|
82 |
except Exception as e:
|
83 |
st.error(f"问答过程出错:{e}")
|
@@ -98,12 +109,12 @@ st.divider()
|
|
98 |
col3, col4 = st.columns(2)
|
99 |
with col3:
|
100 |
if st.button("使用原数据集中的随机问题"):
|
101 |
-
dataset_size = len(
|
102 |
random_index = random.randint(0, dataset_size - 1)
|
103 |
# 读取随机问题
|
104 |
-
random_question =
|
105 |
random_question = converter.convert(random_question)
|
106 |
-
origin_answer =
|
107 |
origin_answer = converter.convert(origin_answer)
|
108 |
print('[]' + str(random_index) + '/' + str(dataset_size) + ']random_question: ' + random_question)
|
109 |
print('origin_answer: ' + origin_answer)
|
|
|
10 |
# 原数据集是是繁体中文,为了调试方便,将其转换成简体中文之后使用
|
11 |
if "dataset_loaded" not in st.session_state:
|
12 |
st.session_state.dataset_loaded = False
|
13 |
+
st.session_state.data_list = []
|
14 |
+
st.session_state.answer_list = []
|
15 |
if not st.session_state.dataset_loaded:
|
16 |
try:
|
17 |
with st.spinner("正在读取数据库..."):
|
18 |
converter = OpenCC('tw2s') # 'tw2s.json' 表示繁体中文到简体中文的转换
|
19 |
dataset = load_dataset("rorubyy/attack_on_titan_wiki_chinese")
|
20 |
+
for example in dataset["train"]:
|
21 |
+
converted_answer = converter.convert(example["Answer"])
|
22 |
+
converted_question = converter.convert(example["Question"])
|
23 |
+
st.session_state.answer_list.append(converted_answer)
|
24 |
+
st.session_state.data_list.append({"Question": converted_question, "Answer": converted_answer})
|
25 |
st.success("数据库读取完成!")
|
26 |
+
print("数据库读取完成!")
|
27 |
except Exception as e:
|
28 |
st.error(f"读取数据集失败:{e}")
|
29 |
st.stop()
|
|
|
36 |
try:
|
37 |
with st.spinner("正在构建向量数据库..."):
|
38 |
embeddings = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
|
39 |
+
db = FAISS.from_texts(st.session_state.answer_list, embeddings)
|
40 |
st.success("向量数据库构建完成!")
|
41 |
+
print("向量数据库构建完成!")
|
42 |
except Exception as e:
|
43 |
st.error(f"向量数据库构建失败:{e}")
|
44 |
st.stop()
|
|
|
58 |
with st.spinner("正在初始化 Gemma 模型..."):
|
59 |
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": temperature, "max_length": max_length})
|
60 |
st.success("Gemma 模型初始化完成!")
|
61 |
+
print("Gemma 模型初始化完成!")
|
62 |
st.session_state.repo_id = repo_id
|
63 |
st.session_state.temperature = temperature
|
64 |
st.session_state.max_length = max_length
|
|
|
81 |
print('prompt: ' + prompt)
|
82 |
|
83 |
st.success("本地数据集筛选完成!")
|
84 |
+
print("本地数据集筛选完成!")
|
85 |
|
86 |
with st.spinner("正在生成答案..."):
|
87 |
answer = llm.invoke(prompt)
|
88 |
# 去掉 prompt 的内容
|
89 |
answer = answer.replace(prompt, "").strip()
|
90 |
st.success("答案已经生成!")
|
91 |
+
print("答案已经生成!")
|
92 |
return {"prompt": prompt, "answer": answer}
|
93 |
except Exception as e:
|
94 |
st.error(f"问答过程出错:{e}")
|
|
|
109 |
col3, col4 = st.columns(2)
|
110 |
with col3:
|
111 |
if st.button("使用原数据集中的随机问题"):
|
112 |
+
dataset_size = len(st.session_state.data_list)
|
113 |
random_index = random.randint(0, dataset_size - 1)
|
114 |
# 读取随机问题
|
115 |
+
random_question = st.session_state.data_list[random_index]["Question"]
|
116 |
random_question = converter.convert(random_question)
|
117 |
+
origin_answer = st.session_state.data_list[random_index]["Answer"]
|
118 |
origin_answer = converter.convert(origin_answer)
|
119 |
print('[]' + str(random_index) + '/' + str(dataset_size) + ']random_question: ' + random_question)
|
120 |
print('origin_answer: ' + origin_answer)
|