Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
# Print the versions of the packages
|
8 |
+
st.write(f"Streamlit version: {st.__version__}")
|
9 |
+
st.write(f"Pandas version: {pd.__version__}")
|
10 |
+
st.write(f"Numpy version: {np.__version__}")
|
11 |
+
|
12 |
+
# URLs for the logos
|
13 |
+
MAIN_LOGO_URL = "https://islamictrusthk.org/assets/images/top-logo.png"
|
14 |
+
SIDEBAR_LOGO_URL = "https://bot.islamictrusthk.org/assets/content_files/20240606095159123011.png"
|
15 |
+
|
16 |
+
# Configure the page to be mobile-friendly
|
17 |
+
st.set_page_config(layout="centered", page_title="Restaurant Data Viewer")
|
18 |
+
|
19 |
+
# Inject custom CSS for better mobile compatibility
|
20 |
+
st.markdown(
|
21 |
+
"""
|
22 |
+
<style>
|
23 |
+
/* Adjust font sizes for mobile devices */
|
24 |
+
@media (max-width: 600px) {
|
25 |
+
.stTextInput, .stMultiSelect {
|
26 |
+
font-size: 14px;
|
27 |
+
}
|
28 |
+
.stDataFrame {
|
29 |
+
font-size: 12px;
|
30 |
+
}
|
31 |
+
.stButton button {
|
32 |
+
font-size: 14px;
|
33 |
+
}
|
34 |
+
}
|
35 |
+
</style>
|
36 |
+
""",
|
37 |
+
unsafe_allow_html=True,
|
38 |
+
)
|
39 |
+
|
40 |
+
# Directory to save uploaded files
|
41 |
+
UPLOAD_DIR = "uploaded_files"
|
42 |
+
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
43 |
+
|
44 |
+
# Function to load data
|
45 |
+
@st.cache_data
|
46 |
+
def load_data(file_path):
|
47 |
+
df = pd.read_excel(file_path)
|
48 |
+
df.fillna("Not Available", inplace=True)
|
49 |
+
return df
|
50 |
+
|
51 |
+
# Function to convert dataframe to CSV
|
52 |
+
def convert_df_to_csv(df):
|
53 |
+
return df.to_csv(index=False).encode('utf-8')
|
54 |
+
|
55 |
+
# Function to format date
|
56 |
+
def format_date_column(df, column):
|
57 |
+
df[column] = pd.to_datetime(df[column], errors='coerce').dt.date
|
58 |
+
return df
|
59 |
+
|
60 |
+
# Function to verify required columns exist
|
61 |
+
def verify_columns(df, required_columns):
|
62 |
+
missing_columns = [col for col in required_columns if col not in df.columns]
|
63 |
+
return missing_columns
|
64 |
+
|
65 |
+
# Function to display data in tiles
|
66 |
+
def display_tiles(df, cols):
|
67 |
+
for i, (_, row) in enumerate(df.iterrows()):
|
68 |
+
col = cols[i % len(cols)]
|
69 |
+
with col:
|
70 |
+
st.markdown(f"**Name:** {row['Name']}")
|
71 |
+
st.markdown(f"**Cuisine:** {row['Cuisine']}")
|
72 |
+
st.markdown(f"**Location:** {row['Location']}")
|
73 |
+
st.markdown(f"**Restaurant Type:** {row['Restaurant Type']}")
|
74 |
+
st.markdown(f"**Expiry Date:** {row['Expiry Date']}")
|
75 |
+
st.markdown(f"**Website:** {row['Website']}")
|
76 |
+
st.markdown(f"**Directions:** {row['Directions']}")
|
77 |
+
st.markdown("---")
|
78 |
+
|
79 |
+
# Initialize session state
|
80 |
+
if 'df' not in st.session_state:
|
81 |
+
st.session_state.df = None
|
82 |
+
if 'authenticated' not in st.session_state:
|
83 |
+
st.session_state.authenticated = False
|
84 |
+
if 'just_logged_in' not in st.session_state:
|
85 |
+
st.session_state.just_logged_in = False
|
86 |
+
|
87 |
+
# List of valid usernames and passwords
|
88 |
+
user_credentials = {
|
89 |
+
'user1': 'password1',
|
90 |
+
'user2': 'password2'
|
91 |
+
}
|
92 |
+
|
93 |
+
# Authentication function
|
94 |
+
def authenticate(username, password):
|
95 |
+
if username in user_credentials and user_credentials[username] == password:
|
96 |
+
return True
|
97 |
+
return False
|
98 |
+
|
99 |
+
# Authentication block
|
100 |
+
if not st.session_state.authenticated:
|
101 |
+
st.title("Login")
|
102 |
+
username = st.text_input("Username")
|
103 |
+
password = st.text_input("Password", type="password")
|
104 |
+
if st.button("Login"):
|
105 |
+
if authenticate(username, password):
|
106 |
+
st.session_state.authenticated = True
|
107 |
+
st.session_state.just_logged_in = True
|
108 |
+
st.experimental_rerun() # Refresh the app to reflect the login state
|
109 |
+
else:
|
110 |
+
st.error("Invalid username or password")
|
111 |
+
elif st.session_state.just_logged_in:
|
112 |
+
st.session_state.just_logged_in = False
|
113 |
+
st.experimental_rerun()
|
114 |
+
else:
|
115 |
+
# Sidebar for logo, file upload, and file management
|
116 |
+
with st.sidebar:
|
117 |
+
st.image(SIDEBAR_LOGO_URL, use_column_width=True)
|
118 |
+
|
119 |
+
st.title("File Management")
|
120 |
+
|
121 |
+
# File uploader
|
122 |
+
uploaded_file = st.file_uploader("Choose an Excel file", type="xlsx")
|
123 |
+
|
124 |
+
if uploaded_file:
|
125 |
+
try:
|
126 |
+
# Save the uploaded file
|
127 |
+
file_path = os.path.join(UPLOAD_DIR, uploaded_file.name)
|
128 |
+
with open(file_path, "wb") as f:
|
129 |
+
f.write(uploaded_file.getbuffer())
|
130 |
+
|
131 |
+
st.success(f"File '{uploaded_file.name}' uploaded successfully.")
|
132 |
+
|
133 |
+
df = load_data(file_path)
|
134 |
+
st.session_state.df = df
|
135 |
+
|
136 |
+
except Exception as e:
|
137 |
+
st.error(f"An error occurred: {e}")
|
138 |
+
|
139 |
+
# Manage existing files
|
140 |
+
st.subheader("Manage Existing Files")
|
141 |
+
existing_files = [f for f in os.listdir(UPLOAD_DIR) if f.endswith(".xlsx")]
|
142 |
+
if existing_files:
|
143 |
+
selected_file = st.selectbox("Select a file to view or delete", existing_files)
|
144 |
+
if st.button("Delete Selected File"):
|
145 |
+
os.remove(os.path.join(UPLOAD_DIR, selected_file))
|
146 |
+
st.success(f"File '{selected_file}' deleted successfully.")
|
147 |
+
st.experimental_rerun() # Refresh the app to reflect changes
|
148 |
+
|
149 |
+
if st.button("Load Selected File") or st.session_state.df is None:
|
150 |
+
try:
|
151 |
+
file_path = os.path.join(UPLOAD_DIR, selected_file)
|
152 |
+
df = load_data(file_path)
|
153 |
+
st.session_state.df = df
|
154 |
+
except Exception as e:
|
155 |
+
st.error(f"An error occurred: {e}")
|
156 |
+
else:
|
157 |
+
st.info("No files available.")
|
158 |
+
|
159 |
+
# Display the main logo
|
160 |
+
st.image(MAIN_LOGO_URL, use_column_width=True)
|
161 |
+
|
162 |
+
st.title("Restaurant Data Viewer")
|
163 |
+
|
164 |
+
# Display and filter the loaded dataframe if available
|
165 |
+
if st.session_state.df is not None:
|
166 |
+
df = st.session_state.df
|
167 |
+
|
168 |
+
# Define required columns
|
169 |
+
required_columns = ['Name', 'Cuisine', 'Location', 'Restaurant Type', 'Expiry Date', 'Website', 'Directions']
|
170 |
+
|
171 |
+
# Verify required columns
|
172 |
+
missing_columns = verify_columns(df, required_columns)
|
173 |
+
if missing_columns:
|
174 |
+
st.error(f"The following required columns are missing from the uploaded file: {', '.join(missing_columns)}")
|
175 |
+
else:
|
176 |
+
# Format the expiry date column to remove time
|
177 |
+
df = format_date_column(df, 'Expiry Date')
|
178 |
+
|
179 |
+
# Display the dataframe
|
180 |
+
st.subheader("Loaded Data")
|
181 |
+
st.dataframe(df)
|
182 |
+
|
183 |
+
# Filter functionality
|
184 |
+
st.subheader("Filters")
|
185 |
+
# Use columns for a more responsive layout
|
186 |
+
col1, col2, col3, col4, col5 = st.columns(5)
|
187 |
+
|
188 |
+
with col1:
|
189 |
+
# Filter by Name
|
190 |
+
name_filter = st.text_input("Name contains")
|
191 |
+
with col2:
|
192 |
+
# Filter by Cuisine
|
193 |
+
cuisine_filter = st.multiselect("Cuisine", sorted(df['Cuisine'].unique()))
|
194 |
+
with col3:
|
195 |
+
# Filter by Location
|
196 |
+
location_filter = st.multiselect("Location", df['Location'].unique())
|
197 |
+
with col4:
|
198 |
+
# Filter by Restaurant Type
|
199 |
+
restaurant_type_filter = st.multiselect("Restaurant Type", df['Restaurant Type'].unique())
|
200 |
+
with col5:
|
201 |
+
# Filter by Expiry Date
|
202 |
+
expiry_date_filter = st.date_input("Expiry Date", [])
|
203 |
+
|
204 |
+
# Apply filters
|
205 |
+
filtered_df = df.copy()
|
206 |
+
|
207 |
+
if name_filter:
|
208 |
+
filtered_df = filtered_df[filtered_df['Name'].str.contains(name_filter, case=False, na=False)]
|
209 |
+
if cuisine_filter:
|
210 |
+
filtered_df = filtered_df[filtered_df['Cuisine'].isin(cuisine_filter)]
|
211 |
+
if location_filter:
|
212 |
+
filtered_df = filtered_df[filtered_df['Location'].isin(location_filter)]
|
213 |
+
if restaurant_type_filter:
|
214 |
+
filtered_df = filtered_df[filtered_df['Restaurant Type'].isin(restaurant_type_filter)]
|
215 |
+
if expiry_date_filter:
|
216 |
+
if len(expiry_date_filter) == 1:
|
217 |
+
filtered_df = filtered_df[filtered_df['Expiry Date'] == expiry_date_filter[0]]
|
218 |
+
elif len(expiry_date_filter) == 2:
|
219 |
+
start_date, end_date = expiry_date_filter
|
220 |
+
filtered_df = filtered_df[(filtered_df['Expiry Date'] >= start_date) & (filtered_df['Expiry Date'] <= end_date)]
|
221 |
+
|
222 |
+
# Display the filtered dataframe in a tile format
|
223 |
+
st.subheader("Filtered Data")
|
224 |
+
if not filtered_df.empty:
|
225 |
+
num_cols = 3 # Number of columns for the tile layout
|
226 |
+
cols = st.columns(num_cols)
|
227 |
+
display_tiles(filtered_df, cols)
|
228 |
+
|
229 |
+
# Download button for filtered data
|
230 |
+
csv = convert_df_to_csv(filtered_df)
|
231 |
+
st.download_button(
|
232 |
+
label="Download filtered data as CSV",
|
233 |
+
data=csv,
|
234 |
+
file_name='filtered_data.csv',
|
235 |
+
mime='text/csv',
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
st.info("No data matches the filter criteria.")
|