Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,12 +8,7 @@ st.set_page_config(layout="centered", page_title="Restaurant Data Viewer")
|
|
8 |
|
9 |
# URLs for the logos
|
10 |
MAIN_LOGO_URL = "https://islamictrusthk.org/assets/images/top-logo.png"
|
11 |
-
SIDEBAR_LOGO_URL = "https://bot.islamictrusthk.org/assets/content_files/20240606095159123011.png"
|
12 |
-
|
13 |
-
# Print the versions of the packages
|
14 |
-
st.write(f"Streamlit version: {st.__version__}")
|
15 |
-
st.write(f"Pandas version: {pd.__version__}")
|
16 |
-
st.write(f"Numpy version: {np.__version__}")
|
17 |
|
18 |
# Inject custom CSS for better mobile compatibility
|
19 |
st.markdown(
|
@@ -95,7 +90,8 @@ def authenticate(username, password):
|
|
95 |
|
96 |
# Function to trigger rerun
|
97 |
def trigger_rerun():
|
98 |
-
st.
|
|
|
99 |
|
100 |
# Authentication block
|
101 |
if not st.session_state.authenticated:
|
@@ -176,21 +172,18 @@ else:
|
|
176 |
# Filter functionality
|
177 |
st.subheader("Filters")
|
178 |
# Use columns for a more responsive layout
|
179 |
-
col1, col2, col3, col4
|
180 |
|
181 |
with col1:
|
182 |
# Filter by Name
|
183 |
name_filter = st.text_input("Name contains")
|
184 |
with col2:
|
185 |
-
# Filter by Cuisine
|
186 |
-
cuisine_filter = st.multiselect("Cuisine", sorted(df['Cuisine'].drop_duplicates().unique()))
|
187 |
-
with col3:
|
188 |
# Filter by Location
|
189 |
location_filter = st.multiselect("Location", df['Location'].drop_duplicates())
|
190 |
-
with
|
191 |
# Filter by Restaurant Type
|
192 |
restaurant_type_filter = st.multiselect("Restaurant Type", df['Restaurant Type'].drop_duplicates())
|
193 |
-
with
|
194 |
# Filter by Expiry Date
|
195 |
expiry_date_filter = st.date_input("Expiry Date", [])
|
196 |
|
@@ -199,8 +192,6 @@ else:
|
|
199 |
|
200 |
if name_filter:
|
201 |
filtered_df = filtered_df[filtered_df['Name'].str.contains(name_filter, case=False, na=False)]
|
202 |
-
if cuisine_filter:
|
203 |
-
filtered_df = filtered_df[filtered_df['Cuisine'].isin(cuisine_filter)]
|
204 |
if location_filter:
|
205 |
filtered_df = filtered_df[filtered_df['Location'].isin(location_filter)]
|
206 |
if restaurant_type_filter:
|
@@ -228,4 +219,4 @@ else:
|
|
228 |
mime='text/csv',
|
229 |
)
|
230 |
else:
|
231 |
-
st.info("No data matches the filter criteria.")
|
|
|
8 |
|
9 |
# URLs for the logos
|
10 |
MAIN_LOGO_URL = "https://islamictrusthk.org/assets/images/top-logo.png"
|
11 |
+
SIDEBAR_LOGO_URL = "https://bot.islamictrusthk.org/assets/content_files/20240606095159123011.png"
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Inject custom CSS for better mobile compatibility
|
14 |
st.markdown(
|
|
|
90 |
|
91 |
# Function to trigger rerun
|
92 |
def trigger_rerun():
|
93 |
+
st.set_query_params(rerun=str(pd.Timestamp.now()))
|
94 |
+
st.experimental_rerun() # Force page reload
|
95 |
|
96 |
# Authentication block
|
97 |
if not st.session_state.authenticated:
|
|
|
172 |
# Filter functionality
|
173 |
st.subheader("Filters")
|
174 |
# Use columns for a more responsive layout
|
175 |
+
col1, col2, col3, col4 = st.columns(4)
|
176 |
|
177 |
with col1:
|
178 |
# Filter by Name
|
179 |
name_filter = st.text_input("Name contains")
|
180 |
with col2:
|
|
|
|
|
|
|
181 |
# Filter by Location
|
182 |
location_filter = st.multiselect("Location", df['Location'].drop_duplicates())
|
183 |
+
with col3:
|
184 |
# Filter by Restaurant Type
|
185 |
restaurant_type_filter = st.multiselect("Restaurant Type", df['Restaurant Type'].drop_duplicates())
|
186 |
+
with col4:
|
187 |
# Filter by Expiry Date
|
188 |
expiry_date_filter = st.date_input("Expiry Date", [])
|
189 |
|
|
|
192 |
|
193 |
if name_filter:
|
194 |
filtered_df = filtered_df[filtered_df['Name'].str.contains(name_filter, case=False, na=False)]
|
|
|
|
|
195 |
if location_filter:
|
196 |
filtered_df = filtered_df[filtered_df['Location'].isin(location_filter)]
|
197 |
if restaurant_type_filter:
|
|
|
219 |
mime='text/csv',
|
220 |
)
|
221 |
else:
|
222 |
+
st.info("No data matches the filter criteria.")
|