Spaces:
Sleeping
Sleeping
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# utils.py
|
2 |
+
import openai
|
3 |
+
from pinecone import Pinecone, ServerlessSpec
|
4 |
+
import pandas as pd
|
5 |
+
from typing import List
|
6 |
+
|
7 |
+
# Function to get embeddings from OpenAI's model
|
8 |
+
def get_embedding(text: str, openai_api_key: str, model: str = "text-embedding-ada-002") -> List[float]:
|
9 |
+
"""
|
10 |
+
Get embeddings for a given text using OpenAI's model.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
text (str): Text to be embedded.
|
14 |
+
openai_api_key (str): OpenAI API key.
|
15 |
+
model (str): Model to be used for embedding. Default is "text-embedding-ada-002".
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
List[float]: Embedding vector.
|
19 |
+
"""
|
20 |
+
openai.api_key = openai_api_key
|
21 |
+
try:
|
22 |
+
response = openai.Embedding.create(
|
23 |
+
model=model,
|
24 |
+
input=text
|
25 |
+
)
|
26 |
+
return response['data'][0]['embedding']
|
27 |
+
except Exception as e:
|
28 |
+
print(f"Error getting embedding: {e}")
|
29 |
+
return []
|
30 |
+
|
31 |
+
# Function to process the uploaded CSV and store embeddings in Pinecone
|
32 |
+
def process_csv(file, openai_api_key: str, pinecone_api_key: str, pinecone_env: str) -> str:
|
33 |
+
"""
|
34 |
+
Process the uploaded CSV file and store embeddings in Pinecone.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
file: Uploaded CSV file.
|
38 |
+
openai_api_key (str): OpenAI API key.
|
39 |
+
pinecone_api_key (str): Pinecone API key.
|
40 |
+
pinecone_env (str): Pinecone environment.
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
str: Status message.
|
44 |
+
"""
|
45 |
+
try:
|
46 |
+
df = pd.read_csv(file.name)
|
47 |
+
|
48 |
+
# Initialize Pinecone
|
49 |
+
pc = Pinecone(api_key=pinecone_api_key)
|
50 |
+
index_name = "product-recommendations"
|
51 |
+
|
52 |
+
# Check if index exists
|
53 |
+
if index_name not in pc.list_indexes().names():
|
54 |
+
try:
|
55 |
+
pc.create_index(
|
56 |
+
name=index_name,
|
57 |
+
dimension=1536,
|
58 |
+
spec=ServerlessSpec(cloud="aws", region=pinecone_env)
|
59 |
+
)
|
60 |
+
except Exception as e:
|
61 |
+
print(f"Error creating Pinecone index: {e}")
|
62 |
+
return "Failed to create Pinecone index."
|
63 |
+
|
64 |
+
index = pc.Index(index_name)
|
65 |
+
|
66 |
+
embeddings = []
|
67 |
+
for i, row in df.iterrows():
|
68 |
+
embedding = get_embedding(row['description'], openai_api_key)
|
69 |
+
if embedding:
|
70 |
+
embeddings.append((str(row['product_id']), embedding, {'product_name': row['product_name'], 'image_url': row['image_url']}))
|
71 |
+
|
72 |
+
if embeddings:
|
73 |
+
try:
|
74 |
+
index.upsert(embeddings)
|
75 |
+
except Exception as e:
|
76 |
+
print(f"Error upserting embeddings to Pinecone: {e}")
|
77 |
+
return "Failed to upsert embeddings."
|
78 |
+
|
79 |
+
return "Product catalog processed and embeddings stored in Pinecone."
|
80 |
+
except Exception as e:
|
81 |
+
print(f"Error processing CSV file: {e}")
|
82 |
+
return "Failed to process CSV file."
|