|
import os
|
|
import datasets
|
|
from datasets import load_dataset, ClassLabel, concatenate_datasets
|
|
import torch
|
|
import numpy as np
|
|
import random
|
|
from PIL import Image
|
|
import json
|
|
import copy
|
|
|
|
from torchvision import transforms
|
|
import pickle
|
|
import re
|
|
|
|
from OmniGen import OmniGenProcessor
|
|
from OmniGen.processor import OmniGenCollator
|
|
|
|
|
|
class DatasetFromJson(torch.utils.data.Dataset):
|
|
def __init__(
|
|
self,
|
|
json_file: str,
|
|
image_path: str,
|
|
processer: OmniGenProcessor,
|
|
image_transform,
|
|
max_input_length_limit: int = 18000,
|
|
condition_dropout_prob: float = 0.1,
|
|
keep_raw_resolution: bool = True,
|
|
):
|
|
|
|
self.image_transform = image_transform
|
|
self.processer = processer
|
|
self.condition_dropout_prob = condition_dropout_prob
|
|
self.max_input_length_limit = max_input_length_limit
|
|
self.keep_raw_resolution = keep_raw_resolution
|
|
|
|
self.data = load_dataset('json', data_files=json_file)['train']
|
|
self.image_path = image_path
|
|
|
|
def process_image(self, image_file):
|
|
if self.image_path is not None:
|
|
image_file = os.path.join(self.image_path, image_file)
|
|
image = Image.open(image_file).convert('RGB')
|
|
return self.image_transform(image)
|
|
|
|
def get_example(self, index):
|
|
example = self.data[index]
|
|
|
|
instruction, input_images, output_image = example['instruction'], example['input_images'], example['output_image']
|
|
if random.random() < self.condition_dropout_prob:
|
|
instruction = '<cfg>'
|
|
input_images = None
|
|
if input_images is not None:
|
|
input_images = [self.process_image(x) for x in input_images]
|
|
mllm_input = self.processer.process_multi_modal_prompt(instruction, input_images)
|
|
|
|
output_image = self.process_image(output_image)
|
|
|
|
return (mllm_input, output_image)
|
|
|
|
|
|
def __getitem__(self, index):
|
|
return self.get_example(index)
|
|
for _ in range(8):
|
|
try:
|
|
mllm_input, output_image = self.get_example(index)
|
|
if len(mllm_input['input_ids']) > self.max_input_length_limit:
|
|
raise RuntimeError(f"cur number of tokens={len(mllm_input['input_ids'])}, larger than max_input_length_limit={self.max_input_length_limit}")
|
|
return mllm_input, output_image
|
|
except Exception as e:
|
|
print("error when loading data: ", e)
|
|
print(self.data[index])
|
|
index = random.randint(0, len(self.data)-1)
|
|
raise RuntimeError("Too many bad data.")
|
|
|
|
|
|
def __len__(self):
|
|
return len(self.data)
|
|
|
|
|
|
|
|
class TrainDataCollator(OmniGenCollator):
|
|
def __init__(self, pad_token_id: int, hidden_size: int, keep_raw_resolution: bool):
|
|
self.pad_token_id = pad_token_id
|
|
self.hidden_size = hidden_size
|
|
self.keep_raw_resolution = keep_raw_resolution
|
|
|
|
def __call__(self, features):
|
|
mllm_inputs = [f[0] for f in features]
|
|
|
|
output_images = [f[1].unsqueeze(0) for f in features]
|
|
target_img_size = [[x.size(-2), x.size(-1)] for x in output_images]
|
|
|
|
all_padded_input_ids, all_position_ids, all_attention_mask, all_padding_images, all_pixel_values, all_image_sizes = self.process_mllm_input(mllm_inputs, target_img_size)
|
|
|
|
if not self.keep_raw_resolution:
|
|
output_image = torch.cat(output_image, dim=0)
|
|
if len(pixel_values) > 0:
|
|
all_pixel_values = torch.cat(all_pixel_values, dim=0)
|
|
else:
|
|
all_pixel_values = None
|
|
|
|
data = {"input_ids": all_padded_input_ids,
|
|
"attention_mask": all_attention_mask,
|
|
"position_ids": all_position_ids,
|
|
"input_pixel_values": all_pixel_values,
|
|
"input_image_sizes": all_image_sizes,
|
|
"padding_images": all_padding_images,
|
|
"output_images": output_images,
|
|
}
|
|
return data
|
|
|
|
|
|
|
|
|
|
|
|
|