File size: 14,665 Bytes
55d914b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import os
import re
from typing import Dict, List
import json
import torch
import numpy as np
import random
from PIL import Image
from torchvision import transforms
from transformers import AutoTokenizer
from huggingface_hub import snapshot_download
from OmniGen.utils import (
create_logger,
update_ema,
requires_grad,
center_crop_arr,
crop_arr,
)
class OmniGenProcessor:
def __init__(self,
text_tokenizer,
max_image_size: int=1024):
self.text_tokenizer = text_tokenizer
self.max_image_size = max_image_size
self.image_transform = transforms.Compose([
transforms.Lambda(lambda pil_image: crop_arr(pil_image, max_image_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
])
self.collator = OmniGenCollator()
self.separate_collator = OmniGenSeparateCollator()
@classmethod
def from_pretrained(cls, model_name):
if not os.path.exists(model_name):
cache_folder = os.getenv('HF_HUB_CACHE')
model_name = snapshot_download(repo_id=model_name,
cache_dir=cache_folder,
allow_patterns="*.json")
text_tokenizer = AutoTokenizer.from_pretrained(model_name)
return cls(text_tokenizer)
def process_image(self, image):
image = Image.open(image).convert('RGB')
return self.image_transform(image)
def process_multi_modal_prompt(self, text, input_images):
text = self.add_prefix_instruction(text)
if input_images is None or len(input_images) == 0:
model_inputs = self.text_tokenizer(text)
return {"input_ids": model_inputs.input_ids, "pixel_values": None, "image_sizes": None}
pattern = r"<\|image_\d+\|>"
prompt_chunks = [self.text_tokenizer(chunk).input_ids for chunk in re.split(pattern, text)]
for i in range(1, len(prompt_chunks)):
if prompt_chunks[i][0] == 1:
prompt_chunks[i] = prompt_chunks[i][1:]
image_tags = re.findall(pattern, text)
image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags]
unique_image_ids = sorted(list(set(image_ids)))
assert unique_image_ids == list(range(1, len(unique_image_ids)+1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}"
# total images must be the same as the number of image tags
assert len(unique_image_ids) == len(input_images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(input_images)} images"
input_images = [input_images[x-1] for x in image_ids]
all_input_ids = []
img_inx = []
idx = 0
for i in range(len(prompt_chunks)):
all_input_ids.extend(prompt_chunks[i])
if i != len(prompt_chunks) -1:
start_inx = len(all_input_ids)
size = input_images[i].size(-2) * input_images[i].size(-1) // 16 // 16
img_inx.append([start_inx, start_inx+size])
all_input_ids.extend([0]*size)
return {"input_ids": all_input_ids, "pixel_values": input_images, "image_sizes": img_inx}
def add_prefix_instruction(self, prompt):
user_prompt = '<|user|>\n'
generation_prompt = 'Generate an image according to the following instructions\n'
assistant_prompt = '<|assistant|>\n<|diffusion|>'
prompt_suffix = "<|end|>\n"
prompt = f"{user_prompt}{generation_prompt}{prompt}{prompt_suffix}{assistant_prompt}"
return prompt
def __call__(self,
instructions: List[str],
input_images: List[List[str]] = None,
height: int = 1024,
width: int = 1024,
negative_prompt: str = "low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers.",
use_img_cfg: bool = True,
separate_cfg_input: bool = False,
) -> Dict:
if input_images is None:
use_img_cfg = False
if isinstance(instructions, str):
instructions = [instructions]
input_images = [input_images]
input_data = []
for i in range(len(instructions)):
cur_instruction = instructions[i]
cur_input_images = None if input_images is None else input_images[i]
if cur_input_images is not None and len(cur_input_images) > 0:
cur_input_images = [self.process_image(x) for x in cur_input_images]
else:
cur_input_images = None
assert "<img><|image_1|></img>" not in cur_instruction
mllm_input = self.process_multi_modal_prompt(cur_instruction, cur_input_images)
neg_mllm_input, img_cfg_mllm_input = None, None
neg_mllm_input = self.process_multi_modal_prompt(negative_prompt, None)
if use_img_cfg:
if cur_input_images is not None and len(cur_input_images) >= 1:
img_cfg_prompt = [f"<img><|image_{i+1}|></img>" for i in range(len(cur_input_images))]
img_cfg_mllm_input = self.process_multi_modal_prompt(" ".join(img_cfg_prompt), cur_input_images)
else:
img_cfg_mllm_input = neg_mllm_input
input_data.append((mllm_input, neg_mllm_input, img_cfg_mllm_input, [height, width]))
if separate_cfg_input:
return self.separate_collator(input_data)
return self.collator(input_data)
class OmniGenCollator:
def __init__(self, pad_token_id=2, hidden_size=3072):
self.pad_token_id = pad_token_id
self.hidden_size = hidden_size
def create_position(self, attention_mask, num_tokens_for_output_images):
position_ids = []
text_length = attention_mask.size(-1)
img_length = max(num_tokens_for_output_images)
for mask in attention_mask:
temp_l = torch.sum(mask)
temp_position = [0]*(text_length-temp_l) + [i for i in range(temp_l+img_length+1)] # we add a time embedding into the sequence, so add one more token
position_ids.append(temp_position)
return torch.LongTensor(position_ids)
def create_mask(self, attention_mask, num_tokens_for_output_images):
extended_mask = []
padding_images = []
text_length = attention_mask.size(-1)
img_length = max(num_tokens_for_output_images)
seq_len = text_length + img_length + 1 # we add a time embedding into the sequence, so add one more token
inx = 0
for mask in attention_mask:
temp_l = torch.sum(mask)
pad_l = text_length - temp_l
temp_mask = torch.tril(torch.ones(size=(temp_l+1, temp_l+1)))
image_mask = torch.zeros(size=(temp_l+1, img_length))
temp_mask = torch.cat([temp_mask, image_mask], dim=-1)
image_mask = torch.ones(size=(img_length, temp_l+img_length+1))
temp_mask = torch.cat([temp_mask, image_mask], dim=0)
if pad_l > 0:
pad_mask = torch.zeros(size=(temp_l+1+img_length, pad_l))
temp_mask = torch.cat([pad_mask, temp_mask], dim=-1)
pad_mask = torch.ones(size=(pad_l, seq_len))
temp_mask = torch.cat([pad_mask, temp_mask], dim=0)
true_img_length = num_tokens_for_output_images[inx]
pad_img_length = img_length - true_img_length
if pad_img_length > 0:
temp_mask[:, -pad_img_length:] = 0
temp_padding_imgs = torch.zeros(size=(1, pad_img_length, self.hidden_size))
else:
temp_padding_imgs = None
extended_mask.append(temp_mask.unsqueeze(0))
padding_images.append(temp_padding_imgs)
inx += 1
return torch.cat(extended_mask, dim=0), padding_images
def adjust_attention_for_input_images(self, attention_mask, image_sizes):
for b_inx in image_sizes.keys():
for start_inx, end_inx in image_sizes[b_inx]:
attention_mask[b_inx][start_inx:end_inx, start_inx:end_inx] = 1
return attention_mask
def pad_input_ids(self, input_ids, image_sizes):
max_l = max([len(x) for x in input_ids])
padded_ids = []
attention_mask = []
new_image_sizes = []
for i in range(len(input_ids)):
temp_ids = input_ids[i]
temp_l = len(temp_ids)
pad_l = max_l - temp_l
if pad_l == 0:
attention_mask.append([1]*max_l)
padded_ids.append(temp_ids)
else:
attention_mask.append([0]*pad_l+[1]*temp_l)
padded_ids.append([self.pad_token_id]*pad_l+temp_ids)
if i in image_sizes:
new_inx = []
for old_inx in image_sizes[i]:
new_inx.append([x+pad_l for x in old_inx])
image_sizes[i] = new_inx
return torch.LongTensor(padded_ids), torch.LongTensor(attention_mask), image_sizes
def process_mllm_input(self, mllm_inputs, target_img_size):
num_tokens_for_output_images = []
for img_size in target_img_size:
num_tokens_for_output_images.append(img_size[0]*img_size[1]//16//16)
pixel_values, image_sizes = [], {}
b_inx = 0
for x in mllm_inputs:
if x['pixel_values'] is not None:
pixel_values.extend(x['pixel_values'])
for size in x['image_sizes']:
if b_inx not in image_sizes:
image_sizes[b_inx] = [size]
else:
image_sizes[b_inx].append(size)
b_inx += 1
pixel_values = [x.unsqueeze(0) for x in pixel_values]
input_ids = [x['input_ids'] for x in mllm_inputs]
padded_input_ids, attention_mask, image_sizes = self.pad_input_ids(input_ids, image_sizes)
position_ids = self.create_position(attention_mask, num_tokens_for_output_images)
attention_mask, padding_images = self.create_mask(attention_mask, num_tokens_for_output_images)
attention_mask = self.adjust_attention_for_input_images(attention_mask, image_sizes)
return padded_input_ids, position_ids, attention_mask, padding_images, pixel_values, image_sizes
def __call__(self, features):
mllm_inputs = [f[0] for f in features]
cfg_mllm_inputs = [f[1] for f in features]
img_cfg_mllm_input = [f[2] for f in features]
target_img_size = [f[3] for f in features]
if img_cfg_mllm_input[0] is not None:
mllm_inputs = mllm_inputs + cfg_mllm_inputs + img_cfg_mllm_input
target_img_size = target_img_size + target_img_size + target_img_size
else:
mllm_inputs = mllm_inputs + cfg_mllm_inputs
target_img_size = target_img_size + target_img_size
all_padded_input_ids, all_position_ids, all_attention_mask, all_padding_images, all_pixel_values, all_image_sizes = self.process_mllm_input(mllm_inputs, target_img_size)
data = {"input_ids": all_padded_input_ids,
"attention_mask": all_attention_mask,
"position_ids": all_position_ids,
"input_pixel_values": all_pixel_values,
"input_image_sizes": all_image_sizes,
"padding_images": all_padding_images,
}
return data
class OmniGenSeparateCollator(OmniGenCollator):
def __call__(self, features):
mllm_inputs = [f[0] for f in features]
cfg_mllm_inputs = [f[1] for f in features]
img_cfg_mllm_input = [f[2] for f in features]
target_img_size = [f[3] for f in features]
all_padded_input_ids, all_attention_mask, all_position_ids, all_pixel_values, all_image_sizes, all_padding_images = [], [], [], [], [], []
padded_input_ids, position_ids, attention_mask, padding_images, pixel_values, image_sizes = self.process_mllm_input(mllm_inputs, target_img_size)
all_padded_input_ids.append(padded_input_ids)
all_attention_mask.append(attention_mask)
all_position_ids.append(position_ids)
all_pixel_values.append(pixel_values)
all_image_sizes.append(image_sizes)
all_padding_images.append(padding_images)
if cfg_mllm_inputs[0] is not None:
padded_input_ids, position_ids, attention_mask, padding_images, pixel_values, image_sizes = self.process_mllm_input(cfg_mllm_inputs, target_img_size)
all_padded_input_ids.append(padded_input_ids)
all_attention_mask.append(attention_mask)
all_position_ids.append(position_ids)
all_pixel_values.append(pixel_values)
all_image_sizes.append(image_sizes)
all_padding_images.append(padding_images)
if img_cfg_mllm_input[0] is not None:
padded_input_ids, position_ids, attention_mask, padding_images, pixel_values, image_sizes = self.process_mllm_input(img_cfg_mllm_input, target_img_size)
all_padded_input_ids.append(padded_input_ids)
all_attention_mask.append(attention_mask)
all_position_ids.append(position_ids)
all_pixel_values.append(pixel_values)
all_image_sizes.append(image_sizes)
all_padding_images.append(padding_images)
data = {"input_ids": all_padded_input_ids,
"attention_mask": all_attention_mask,
"position_ids": all_position_ids,
"input_pixel_values": all_pixel_values,
"input_image_sizes": all_image_sizes,
"padding_images": all_padding_images,
}
return data
|