nyc-taxi-model / main.py
zapatacc's picture
updating the Dockerfile
b5b8715
import pickle
import mlflow
from fastapi import FastAPI
from pydantic import BaseModel
from mlflow import MlflowClient
# MLflow settings
# dagshub_repo = "url-to-your-repo"
# dagshub_repo = "https://dagshub.com/zapatacc/nyc-taxi-time-prediction"
# dagshub.init(url=dagshub_repo, mlflow=True)
# MLFLOW_TRACKING_URI = mlflow.get_tracking_uri()
MLFLOW_TRACKING_URI = "https://dagshub.com/zapatacc/nyc-taxi-time-prediction.mlflow"
mlflow.set_tracking_uri(uri=MLFLOW_TRACKING_URI)
client = MlflowClient(tracking_uri=MLFLOW_TRACKING_URI)
run_ = mlflow.search_runs(order_by=['metrics.rmse ASC'],
output_format="list",
experiment_names=["nyc-taxi-experiment-prefect"]
)[0]
run_id = run_.info.run_id
run_uri = f"runs:/{run_id}/preprocessor"
client.download_artifacts(
run_id=run_id,
path='preprocessor',
dst_path='.'
)
with open("preprocessor/preprocessor.b", "rb") as f_in:
dv = pickle.load(f_in)
model_name = "nyc-taxi-model"
alias = "champion"
model_uri = f"models:/{model_name}@{alias}"
champion_model = mlflow.pyfunc.load_model(
model_uri=model_uri
)
def preprocess(input_data):
input_dict = {
'PU_DO': input_data.PULocationID + "_" + input_data.DOLocationID,
'trip_distance': input_data.trip_distance,
}
return dv.transform(input_dict)
def predict(input_data):
X_pred = preprocess(input_data)
return champion_model.predict(X_pred)
app = FastAPI()
class InputData(BaseModel):
PULocationID: str
DOLocationID: str
trip_distance: float
@app.post("/predict")
def predict_endpoint(input_data: InputData):
result = predict(input_data)[0]
return {
"prediction": float(result)
}
@app.get("/")
def health_check():
return {"healthy": True}