|
import os |
|
import shutil |
|
from pathlib import Path |
|
from typing import List, Tuple, Union |
|
|
|
import numpy |
|
import pandas |
|
|
|
from concrete.ml.sklearn import XGBClassifier as ConcreteXGBoostClassifier |
|
|
|
|
|
|
|
INPUT_BROWSER_LIMIT = 400 |
|
|
|
|
|
SERVER_URL = "http://localhost:8000/" |
|
|
|
CURRENT_DIR = Path(__file__).parent |
|
DEPLOYMENT_DIR = CURRENT_DIR / "deployment_logit" |
|
KEYS_DIR = DEPLOYMENT_DIR / ".fhe_keys" |
|
CLIENT_DIR = DEPLOYMENT_DIR / "client_dir" |
|
SERVER_DIR = DEPLOYMENT_DIR / "server_dir" |
|
|
|
ALL_DIRS = [KEYS_DIR, CLIENT_DIR, SERVER_DIR] |
|
|
|
|
|
TARGET_COLUMNS = ["prognosis_encoded", "prognosis"] |
|
|
|
TRAINING_FILENAME = "./data/Training_preprocessed.csv" |
|
TESTING_FILENAME = "./data/Testing_preprocessed.csv" |
|
|
|
|
|
|
|
from typing import List, Tuple |
|
|
|
|
|
def pretty_print( |
|
inputs, case_conversion=str.title, which_replace: str = "_", to_what: str = " ", delimiter=None |
|
): |
|
""" |
|
Prettify and sort the input as a list of string. |
|
|
|
Args: |
|
inputs (Any): The inputs to be prettified. |
|
|
|
Returns: |
|
List: The prettified and sorted list of inputs. |
|
|
|
""" |
|
|
|
pretty_list = [] |
|
for item in inputs: |
|
if isinstance(item, list): |
|
pretty_list.extend(item) |
|
else: |
|
pretty_list.append(item) |
|
|
|
|
|
pretty_list = sorted(list(set(pretty_list))) |
|
|
|
pretty_list = [item.replace(which_replace, to_what) for item in pretty_list] |
|
pretty_list = [case_conversion(item) for item in pretty_list] |
|
if delimiter: |
|
pretty_list = f"{delimiter.join(pretty_list)}." |
|
|
|
return pretty_list |
|
|
|
|
|
def clean_directory() -> None: |
|
""" |
|
Clear direcgtories |
|
""" |
|
print("Cleaning...\n") |
|
for target_dir in ALL_DIRS: |
|
if os.path.exists(target_dir) and os.path.isdir(target_dir): |
|
shutil.rmtree(target_dir) |
|
target_dir.mkdir(exist_ok=True, parents=True) |
|
|
|
|
|
def get_disease_name(encoded_prediction: int, file_name: str = TRAINING_FILENAME) -> str: |
|
"""Return the disease name given its encoded label. |
|
|
|
Args: |
|
encoded_prediction (int): The encoded prediction |
|
file_name (str): The data file path |
|
|
|
Returns: |
|
str: The according disease name |
|
""" |
|
df = pandas.read_csv(file_name, usecols=TARGET_COLUMNS).drop_duplicates() |
|
disease_name, _ = df[df[TARGET_COLUMNS[0]] == encoded_prediction].values.flatten() |
|
return disease_name |
|
|
|
|
|
def load_data() -> Union[Tuple[pandas.DataFrame, numpy.ndarray], List]: |
|
""" |
|
Return the data |
|
|
|
Args: |
|
None |
|
|
|
Return: |
|
The train, testing set and valid symptoms. |
|
|
|
|
|
""" |
|
|
|
df_train = pandas.read_csv(TRAINING_FILENAME) |
|
df_test = pandas.read_csv(TESTING_FILENAME) |
|
|
|
|
|
|
|
|
|
|
|
y_train = df_train[TARGET_COLUMNS[0]] |
|
X_train = df_train.drop(columns=TARGET_COLUMNS, axis=1, errors="ignore") |
|
|
|
y_test = df_test[TARGET_COLUMNS[0]] |
|
X_test = df_test.drop(columns=TARGET_COLUMNS, axis=1, errors="ignore") |
|
|
|
return ( |
|
(X_train, X_test), |
|
(y_train, y_test), |
|
X_train.columns.to_list(), |
|
df_train[TARGET_COLUMNS[1]].unique().tolist(), |
|
) |
|
|
|
|
|
def load_model(X_train: pandas.DataFrame, y_train: numpy.ndarray): |
|
""" |
|
Load a pre-trained serialized model |
|
|
|
Args: |
|
X_train (pandas.DataFrame): Training set |
|
y_train (numpy.ndarray): Targets of the training set |
|
|
|
Return: |
|
The Concrete ML model and its circuit |
|
""" |
|
|
|
concrete_args = {"max_depth": 1, "n_bits": 3, "n_estimators": 3, "n_jobs": -1} |
|
classifier = ConcreteXGBoostClassifier(**concrete_args) |
|
|
|
classifier.fit(X_train, y_train) |
|
|
|
circuit = classifier.compile(X_train) |
|
|
|
return classifier, circuit |
|
|