|
import subprocess |
|
import time |
|
from typing import Dict, List, Tuple |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import pandas as pd |
|
import requests |
|
from symptoms_categories import SYMPTOMS_LIST |
|
from utils import ( |
|
CLIENT_DIR, |
|
CURRENT_DIR, |
|
DEPLOYMENT_DIR, |
|
INPUT_BROWSER_LIMIT, |
|
KEYS_DIR, |
|
SERVER_URL, |
|
TARGET_COLUMNS, |
|
TRAINING_FILENAME, |
|
clean_directory, |
|
get_disease_name, |
|
load_data, |
|
pretty_print, |
|
) |
|
|
|
from concrete.ml.deployment import FHEModelClient |
|
|
|
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR) |
|
time.sleep(3) |
|
|
|
|
|
|
|
|
|
def is_none(obj) -> bool: |
|
""" |
|
Check if the object is None. |
|
|
|
Args: |
|
obj (any): The input to be checked. |
|
|
|
Returns: |
|
bool: True if the object is None or empty, False otherwise. |
|
""" |
|
return obj is None or (obj is not None and len(obj) < 1) |
|
|
|
|
|
def display_default_symptoms_fn(default_disease: str) -> Dict: |
|
""" |
|
Displays the symptoms of a given existing disease. |
|
|
|
Args: |
|
default_disease (str): Disease |
|
Returns: |
|
Dict: The according symptoms |
|
""" |
|
df = pd.read_csv(TRAINING_FILENAME) |
|
df_filtred = df[df[TARGET_COLUMNS[1]] == default_disease] |
|
|
|
return { |
|
default_symptoms: gr.update( |
|
visible=True, |
|
value=pretty_print( |
|
df_filtred.columns[df_filtred.eq(1).any()].to_list(), delimiter=", " |
|
), |
|
) |
|
} |
|
|
|
|
|
def get_user_symptoms_from_checkboxgroup(checkbox_symptoms: List) -> np.array: |
|
""" |
|
Convert the user symptoms into a binary vector representation. |
|
|
|
Args: |
|
checkbox_symptoms (List): A list of user symptoms. |
|
|
|
Returns: |
|
np.array: A binary vector representing the user's symptoms. |
|
|
|
Raises: |
|
KeyError: If a provided symptom is not recognized as a valid symptom. |
|
|
|
""" |
|
symptoms_vector = {key: 0 for key in valid_symptoms} |
|
for pretty_symptom in checkbox_symptoms: |
|
original_symptom = "_".join((pretty_symptom.lower().split(" "))) |
|
if original_symptom not in symptoms_vector.keys(): |
|
raise KeyError( |
|
f"The symptom '{original_symptom}' you provided is not recognized as a valid " |
|
f"symptom.\nHere is the list of valid symptoms: {symptoms_vector}" |
|
) |
|
symptoms_vector[original_symptom] = 1 |
|
|
|
user_symptoms_vect = np.fromiter(symptoms_vector.values(), dtype=float)[np.newaxis, :] |
|
|
|
assert all(value == 0 or value == 1 for value in user_symptoms_vect.flatten()) |
|
|
|
return user_symptoms_vect |
|
|
|
|
|
def get_features_fn(*checked_symptoms: Tuple[str]) -> Dict: |
|
""" |
|
Get vector features based on the selected symptoms. |
|
|
|
Args: |
|
checked_symptoms (Tuple[str]): User symptoms |
|
|
|
Returns: |
|
Dict: The encoded user vector symptoms. |
|
""" |
|
if not any(lst for lst in checked_symptoms if lst): |
|
return { |
|
error_box1: gr.update(visible=True, value="⚠️ Please provide your chief complaints."), |
|
} |
|
|
|
if len(pretty_print(checked_symptoms)) < 5: |
|
print("Provide at least 5 symptoms.") |
|
return { |
|
error_box1: gr.update(visible=True, value="⚠️ Provide at least 5 symptoms"), |
|
one_hot_vector: None, |
|
} |
|
|
|
return { |
|
error_box1: gr.update(visible=False), |
|
one_hot_vector: gr.update( |
|
visible=False, |
|
value=get_user_symptoms_from_checkboxgroup(pretty_print(checked_symptoms)), |
|
), |
|
submit_btn: gr.update(value="Data submitted ✅"), |
|
} |
|
|
|
|
|
def key_gen_fn(user_symptoms: List[str]) -> Dict: |
|
""" |
|
Generate keys for a given user. |
|
|
|
Args: |
|
user_symptoms (List[str]): The vector symptoms provided by the user. |
|
|
|
Returns: |
|
dict: A dictionary containing the generated keys and related information. |
|
|
|
""" |
|
clean_directory() |
|
|
|
if is_none(user_symptoms): |
|
print("Error: Please submit your symptoms or select a default disease.") |
|
return { |
|
error_box2: gr.update(visible=True, value="⚠️ Please submit your symptoms first."), |
|
} |
|
|
|
|
|
user_id = np.random.randint(0, 2**32) |
|
print(f"Your user ID is: {user_id}....") |
|
|
|
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}") |
|
client.load() |
|
|
|
|
|
client.generate_private_and_evaluation_keys() |
|
|
|
|
|
serialized_evaluation_keys = client.get_serialized_evaluation_keys() |
|
assert isinstance(serialized_evaluation_keys, bytes) |
|
|
|
|
|
evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key" |
|
with evaluation_key_path.open("wb") as f: |
|
f.write(serialized_evaluation_keys) |
|
|
|
serialized_evaluation_keys_shorten_hex = serialized_evaluation_keys.hex()[:INPUT_BROWSER_LIMIT] |
|
|
|
return { |
|
error_box2: gr.update(visible=False), |
|
key_box: gr.update(visible=False, value=serialized_evaluation_keys_shorten_hex), |
|
user_id_box: gr.update(visible=True, value=user_id), |
|
key_len_box: gr.update( |
|
visible=False, value=f"{len(serialized_evaluation_keys) / (10**6):.2f} MB" |
|
), |
|
} |
|
|
|
|
|
def encrypt_fn(user_symptoms: np.ndarray, user_id: str) -> None: |
|
""" |
|
Encrypt the user symptoms vector in the `Client Side`. |
|
|
|
Args: |
|
user_symptoms (List[str]): The vector symptoms provided by the user |
|
user_id (user): The current user's ID |
|
""" |
|
|
|
if is_none(user_id) or is_none(user_symptoms): |
|
print("Error in encryption step: Provide your symptoms and generate the evaluation keys.") |
|
return { |
|
error_box3: gr.update( |
|
visible=True, |
|
value="⚠️ Please ensure that your symptoms have been submitted and " |
|
"that you have generated the evaluation key.", |
|
) |
|
} |
|
|
|
|
|
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}") |
|
client.load() |
|
|
|
user_symptoms = np.fromstring(user_symptoms[2:-2], dtype=int, sep=".").reshape(1, -1) |
|
|
|
|
|
encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms) |
|
assert isinstance(encrypted_quantized_user_symptoms, bytes) |
|
encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_input" |
|
|
|
with encrypted_input_path.open("wb") as f: |
|
f.write(encrypted_quantized_user_symptoms) |
|
|
|
encrypted_quantized_user_symptoms_shorten_hex = encrypted_quantized_user_symptoms.hex()[ |
|
:INPUT_BROWSER_LIMIT |
|
] |
|
|
|
return { |
|
error_box3: gr.update(visible=False), |
|
one_hot_vector_box: gr.update(visible=True, value=user_symptoms), |
|
enc_vect_box: gr.update(visible=True, value=encrypted_quantized_user_symptoms_shorten_hex), |
|
} |
|
|
|
|
|
def send_input_fn(user_id: str, user_symptoms: np.ndarray) -> Dict: |
|
"""Send the encrypted data and the evaluation key to the server. |
|
|
|
Args: |
|
user_id (str): The current user's ID |
|
user_symptoms (np.ndarray): The user symptoms |
|
""" |
|
|
|
if is_none(user_id) or is_none(user_symptoms): |
|
return { |
|
error_box4: gr.update( |
|
visible=True, |
|
value="⚠️ Please check your connectivity \n" |
|
"⚠️ Ensure that the symptoms have been submitted and the evaluation " |
|
"key has been generated before sending the data to the server.", |
|
) |
|
} |
|
|
|
evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key" |
|
encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_input" |
|
|
|
if not evaluation_key_path.is_file(): |
|
print( |
|
"Error Encountered While Sending Data to the Server: " |
|
f"The key has been generated correctly - {evaluation_key_path.is_file()=}" |
|
) |
|
|
|
return { |
|
error_box4: gr.update(visible=True, value="⚠️ Please generate the private key first.") |
|
} |
|
|
|
if not encrypted_input_path.is_file(): |
|
print( |
|
"Error Encountered While Sending Data to the Server: The data has not been encrypted " |
|
f"correctly on the client side - {encrypted_input_path.is_file()=}" |
|
) |
|
return { |
|
error_box4: gr.update( |
|
visible=True, |
|
value="⚠️ Please encrypt the data with the private key first.", |
|
), |
|
} |
|
|
|
|
|
data = { |
|
"user_id": user_id, |
|
"input": user_symptoms, |
|
} |
|
|
|
files = [ |
|
("files", open(encrypted_input_path, "rb")), |
|
("files", open(evaluation_key_path, "rb")), |
|
] |
|
|
|
|
|
url = SERVER_URL + "send_input" |
|
with requests.post( |
|
url=url, |
|
data=data, |
|
files=files, |
|
) as response: |
|
print(f"Sending Data: {response.ok=}") |
|
return { |
|
error_box4: gr.update(visible=False), |
|
srv_resp_send_data_box: "Data sent", |
|
} |
|
|
|
|
|
def run_fhe_fn(user_id: str) -> Dict: |
|
"""Send the encrypted input and the evaluation key to the server. |
|
|
|
Args: |
|
user_id (int): The current user's ID. |
|
""" |
|
if is_none(user_id): |
|
return { |
|
error_box5: gr.update( |
|
visible=True, |
|
value="⚠️ Please check your connectivity \n" |
|
"⚠️ Ensure that the symptoms have been submitted, the evaluation " |
|
"key has been generated and the server received the data " |
|
"before processing the data.", |
|
), |
|
fhe_execution_time_box: None, |
|
} |
|
|
|
data = { |
|
"user_id": user_id, |
|
} |
|
|
|
url = SERVER_URL + "run_fhe" |
|
|
|
with requests.post( |
|
url=url, |
|
data=data, |
|
) as response: |
|
if not response.ok: |
|
return { |
|
error_box5: gr.update( |
|
visible=True, |
|
value=( |
|
"⚠️ An error occurred on the Server Side. " |
|
"Please check connectivity and data transmission." |
|
), |
|
), |
|
fhe_execution_time_box: gr.update(visible=False), |
|
} |
|
else: |
|
time.sleep(1) |
|
print(f"response.ok: {response.ok}, {response.json()} - Computed") |
|
|
|
return { |
|
error_box5: gr.update(visible=False), |
|
fhe_execution_time_box: gr.update(visible=True, value=f"{response.json():.2f} seconds"), |
|
} |
|
|
|
|
|
def get_output_fn(user_id: str, user_symptoms: np.ndarray) -> Dict: |
|
"""Retreive the encrypted data from the server. |
|
|
|
Args: |
|
user_id (str): The current user's ID |
|
user_symptoms (np.ndarray): The user symptoms |
|
""" |
|
|
|
if is_none(user_id) or is_none(user_symptoms): |
|
return { |
|
error_box6: gr.update( |
|
visible=True, |
|
value="⚠️ Please check your connectivity \n" |
|
"⚠️ Ensure that the server has successfully processed and transmitted the data to the client.", |
|
) |
|
} |
|
|
|
data = { |
|
"user_id": user_id, |
|
} |
|
|
|
|
|
url = SERVER_URL + "get_output" |
|
with requests.post( |
|
url=url, |
|
data=data, |
|
) as response: |
|
if response.ok: |
|
print(f"Receive Data: {response.ok=}") |
|
|
|
encrypted_output = response.content |
|
|
|
|
|
|
|
encrypted_output_path = CLIENT_DIR / f"{user_id}_encrypted_output" |
|
|
|
with encrypted_output_path.open("wb") as f: |
|
f.write(encrypted_output) |
|
return {error_box6: gr.update(visible=False), srv_resp_retrieve_data_box: "Data received"} |
|
|
|
|
|
def decrypt_fn( |
|
user_id: str, user_symptoms: np.ndarray, *checked_symptoms, threshold: int = 0.5 |
|
) -> Dict: |
|
"""Dencrypt the data on the `Client Side`. |
|
|
|
Args: |
|
user_id (str): The current user's ID |
|
user_symptoms (np.ndarray): The user symptoms |
|
threshold (float): Probability confidence threshold |
|
|
|
Returns: |
|
Decrypted output |
|
""" |
|
|
|
if is_none(user_id) or is_none(user_symptoms): |
|
return { |
|
error_box7: gr.update( |
|
visible=True, |
|
value="⚠️ Please check your connectivity \n" |
|
"⚠️ Ensure that the client has successfully received the data from the server.", |
|
) |
|
} |
|
|
|
|
|
encrypted_output_path = CLIENT_DIR / f"{user_id}_encrypted_output" |
|
|
|
if not encrypted_output_path.is_file(): |
|
print("Error in decryption step: Please run the FHE execution, first.") |
|
return { |
|
error_box7: gr.update( |
|
visible=True, |
|
value="⚠️ Please ensure that: \n" |
|
"- the connectivity \n" |
|
"- the symptoms have been submitted \n" |
|
"- the evaluation key has been generated \n" |
|
"- the server processed the encrypted data \n" |
|
"- the Client received the data from the Server before decrypting the prediction", |
|
), |
|
decrypt_box: None, |
|
} |
|
|
|
|
|
with encrypted_output_path.open("rb") as f: |
|
encrypted_output = f.read() |
|
|
|
|
|
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}") |
|
client.load() |
|
|
|
|
|
output = client.deserialize_decrypt_dequantize(encrypted_output) |
|
|
|
top3_diseases = np.argsort(output.flatten())[-3:][::-1] |
|
top3_proba = output[0][top3_diseases] |
|
|
|
if ( |
|
(top3_proba[0] < threshold) |
|
or (np.sum(top3_proba) < threshold) |
|
or (abs(top3_proba[0] - top3_proba[1]) < threshold) |
|
): |
|
out = "⚠️ The prediction appears uncertain; including more symptoms may improve the results.\n\n" |
|
|
|
else: |
|
out = "" |
|
|
|
out = ( |
|
f"{out}" |
|
f"Given the symptoms you provided: {pretty_print(checked_symptoms, case_conversion=str.capitalize, delimiter=', ')}\n\n" |
|
"Here are the top3 predictions:\n\n" |
|
f"1. « {get_disease_name(top3_diseases[0])} » with a probability of {top3_proba[0]:.2%}\n" |
|
f"2. « {get_disease_name(top3_diseases[1])} » with a probability of {top3_proba[1]:.2%}\n" |
|
f"3. « {get_disease_name(top3_diseases[2])} » with a probability of {top3_proba[2]:.2%}\n" |
|
) |
|
|
|
return { |
|
error_box7: gr.update(visible=False), |
|
decrypt_box: out, |
|
submit_btn: gr.update(value="Submit"), |
|
} |
|
|
|
|
|
def reset_fn(): |
|
"""Reset the space and clear all the box outputs.""" |
|
|
|
clean_directory() |
|
|
|
return { |
|
one_hot_vector_box: None, |
|
submit_btn: gr.update(value="Submit"), |
|
user_id_box: gr.update(visible=False, value=None), |
|
one_hot_vector: None, |
|
default_symptoms: gr.update(visible=True, value=None), |
|
disease_box: gr.update(visible=True, value=None), |
|
quant_vect_box: gr.update(visible=False, value=None), |
|
enc_vect_box: gr.update(visible=True, value=None), |
|
key_box: gr.update(visible=True, value=None), |
|
key_len_box: gr.update(visible=False, value=None), |
|
fhe_execution_time_box: gr.update(visible=True, value=None), |
|
decrypt_box: None, |
|
error_box7: gr.update(visible=False), |
|
error_box1: gr.update(visible=False), |
|
error_box2: gr.update(visible=False), |
|
error_box3: gr.update(visible=False), |
|
error_box4: gr.update(visible=False), |
|
error_box5: gr.update(visible=False), |
|
error_box6: gr.update(visible=False), |
|
srv_resp_send_data_box: None, |
|
srv_resp_retrieve_data_box: None, |
|
**{box: None for box in check_boxes}, |
|
} |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
print("Starting demo ...") |
|
|
|
clean_directory() |
|
|
|
(X_train, X_test), (y_train, y_test), valid_symptoms, diseases = load_data() |
|
|
|
with gr.Blocks() as demo: |
|
|
|
|
|
gr.Markdown( |
|
""" |
|
<p align="center"> |
|
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png"> |
|
</p> |
|
|
|
<h2 align="center">Health Prediction On Encrypted Data Using Fully Homomorphic Encryption.</h2> |
|
|
|
<p align="center"> |
|
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a> |
|
— |
|
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197976802-fddd34c5-f59a-48d0-9bff-7ad1b00cb1fb.png">Documentation</a> |
|
— |
|
<a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197977153-8c9c01a7-451a-4993-8e10-5a6ed5343d02.png">Community</a> |
|
— |
|
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197975044-bab9d199-e120-433b-b3be-abd73b211a54.png">@zama_fhe</a> |
|
</p> |
|
|
|
<p align="center"> |
|
<img width="65%" height="20%" src="https://raw.githubusercontent.com/kcelia/Img/main/healthcare_prediction.jpg"> |
|
</p> |
|
""" |
|
) |
|
gr.Markdown("## Notes") |
|
gr.Markdown( |
|
""" |
|
- The private key is used to encrypt and decrypt the data and shall never be shared. |
|
- The evaluation key is a public key that the server needs to process encrypted data. |
|
""" |
|
) |
|
|
|
|
|
gr.Markdown("\n") |
|
gr.Markdown("## Step 1: Select chief complaints") |
|
gr.Markdown("<hr />") |
|
gr.Markdown("<span style='color:grey'>Client Side</span>") |
|
gr.Markdown("Select at least 5 chief complaints from the list below.") |
|
|
|
|
|
check_boxes = [] |
|
with gr.Row(): |
|
with gr.Column(): |
|
for category in SYMPTOMS_LIST[:3]: |
|
with gr.Accordion(pretty_print(category.keys()), open=False): |
|
check_box = gr.CheckboxGroup(pretty_print(category.values()), show_label=0) |
|
check_boxes.append(check_box) |
|
with gr.Column(): |
|
for category in SYMPTOMS_LIST[3:6]: |
|
with gr.Accordion(pretty_print(category.keys()), open=False): |
|
check_box = gr.CheckboxGroup(pretty_print(category.values()), show_label=0) |
|
check_boxes.append(check_box) |
|
with gr.Column(): |
|
for category in SYMPTOMS_LIST[6:]: |
|
with gr.Accordion(pretty_print(category.keys()), open=False): |
|
check_box = gr.CheckboxGroup(pretty_print(category.values()), show_label=0) |
|
check_boxes.append(check_box) |
|
|
|
error_box1 = gr.Textbox(label="Error ❌", visible=False) |
|
|
|
|
|
gr.Markdown( |
|
"You can choose an **existing disease** and explore its associated symptoms.", |
|
visible=False, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
disease_box = gr.Dropdown(sorted(diseases), label="Diseases", visible=False) |
|
with gr.Column(scale=5): |
|
default_symptoms = gr.Textbox(label="Related Symptoms:", visible=False) |
|
|
|
one_hot_vector = gr.Textbox(visible=False) |
|
|
|
submit_btn = gr.Button("Submit") |
|
|
|
clear_button = gr.Button("Reset Space 🔁", visible=False) |
|
|
|
disease_box.change( |
|
fn=display_default_symptoms_fn, inputs=[disease_box], outputs=[default_symptoms] |
|
) |
|
|
|
submit_btn.click( |
|
fn=get_features_fn, |
|
inputs=[*check_boxes], |
|
outputs=[one_hot_vector, error_box1, submit_btn], |
|
) |
|
|
|
|
|
gr.Markdown("\n") |
|
gr.Markdown("## Step 2: Encrypt data") |
|
gr.Markdown("<hr />") |
|
gr.Markdown("<span style='color:grey'>Client Side</span>") |
|
|
|
gr.Markdown( |
|
"### Key Generation\n\n" |
|
"In FHE schemes, a secret (enc/dec)ryption keys are generated for encrypting and decrypting data owned by the client. \n\n" |
|
"Additionally, a public evaluation key is generated, enabling external entities to perform homomorphic operations on encrypted data, without the need to decrypt them. \n\n" |
|
"The evaluation key will be transmitted to the server for further processing." |
|
) |
|
|
|
gen_key_btn = gr.Button("Generate the evaluation key") |
|
error_box2 = gr.Textbox(label="Error ❌", visible=False) |
|
user_id_box = gr.Textbox(label="User ID:", visible=True) |
|
key_len_box = gr.Textbox(label="Evaluation Key Size:", visible=False) |
|
key_box = gr.Textbox(label="Evaluation key (truncated):", max_lines=3, visible=False) |
|
|
|
gen_key_btn.click( |
|
key_gen_fn, |
|
inputs=one_hot_vector, |
|
outputs=[ |
|
key_box, |
|
user_id_box, |
|
key_len_box, |
|
error_box2, |
|
], |
|
) |
|
|
|
|
|
gr.Markdown("### Encrypt the data") |
|
encrypt_btn = gr.Button("Encrypt the data using the private secret key") |
|
error_box3 = gr.Textbox(label="Error ❌", visible=False) |
|
quant_vect_box = gr.Textbox(label="Quantized Vector:", visible=False) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
one_hot_vector_box = gr.Textbox(label="User Symptoms Vector:", max_lines=10) |
|
with gr.Column(): |
|
enc_vect_box = gr.Textbox(label="Encrypted Vector:", max_lines=10) |
|
|
|
encrypt_btn.click( |
|
encrypt_fn, |
|
inputs=[one_hot_vector, user_id_box], |
|
outputs=[ |
|
one_hot_vector_box, |
|
enc_vect_box, |
|
error_box3, |
|
], |
|
) |
|
|
|
gr.Markdown( |
|
"### Send the encrypted data to the <span style='color:grey'>Server Side</span>" |
|
) |
|
error_box4 = gr.Textbox(label="Error ❌", visible=False) |
|
|
|
with gr.Row().style(equal_height=False): |
|
with gr.Column(scale=4): |
|
send_input_btn = gr.Button("Send data") |
|
with gr.Column(scale=1): |
|
srv_resp_send_data_box = gr.Checkbox(label="Data Sent", show_label=False) |
|
|
|
send_input_btn.click( |
|
send_input_fn, |
|
inputs=[user_id_box, one_hot_vector], |
|
outputs=[error_box4, srv_resp_send_data_box], |
|
) |
|
|
|
|
|
gr.Markdown("\n") |
|
gr.Markdown("## Step 3: Run the FHE evaluation") |
|
gr.Markdown("<hr />") |
|
gr.Markdown("<span style='color:grey'>Server Side</span>") |
|
gr.Markdown( |
|
"Once the server receives the encrypted data, it can process and compute the output without ever decrypting the data just as it would on clear data.\n\n" |
|
"This server employs a [Logistic Regression]() model that has been trained on this [data-set](https://github.com/anujdutt9/Disease-Prediction-from-Symptoms/tree/master/dataset)." |
|
) |
|
|
|
run_fhe_btn = gr.Button("Run the FHE evaluation") |
|
error_box5 = gr.Textbox(label="Error ❌", visible=False) |
|
fhe_execution_time_box = gr.Textbox(label="Total FHE Execution Time:", visible=True) |
|
run_fhe_btn.click( |
|
run_fhe_fn, |
|
inputs=[user_id_box], |
|
outputs=[fhe_execution_time_box, error_box5], |
|
) |
|
|
|
|
|
gr.Markdown("\n") |
|
gr.Markdown("## Step 4: Decrypt the data") |
|
gr.Markdown("<hr />") |
|
gr.Markdown("<span style='color:grey'>Client Side</span>") |
|
gr.Markdown( |
|
"### Get the encrypted data from the <span style='color:grey'>Server Side</span>" |
|
) |
|
|
|
error_box6 = gr.Textbox(label="Error ❌", visible=False) |
|
|
|
|
|
with gr.Row().style(equal_height=True): |
|
with gr.Column(scale=4): |
|
get_output_btn = gr.Button("Get data") |
|
with gr.Column(scale=1): |
|
srv_resp_retrieve_data_box = gr.Checkbox(label="Data Received", show_label=False) |
|
|
|
get_output_btn.click( |
|
get_output_fn, |
|
inputs=[user_id_box, one_hot_vector], |
|
outputs=[srv_resp_retrieve_data_box, error_box6], |
|
) |
|
|
|
|
|
gr.Markdown("### Decrypt the output") |
|
decrypt_btn = gr.Button("Decrypt the output using the private secret key") |
|
error_box7 = gr.Textbox(label="Error ❌", visible=False) |
|
decrypt_box = gr.Textbox(label="Decrypted Output:") |
|
|
|
decrypt_btn.click( |
|
decrypt_fn, |
|
inputs=[user_id_box, one_hot_vector, *check_boxes], |
|
outputs=[decrypt_box, error_box7, submit_btn], |
|
) |
|
|
|
|
|
|
|
gr.Markdown( |
|
"""The app was built with [Concrete ML](https://github.com/zama-ai/concrete-ml), a Privacy-Preserving Machine Learning (PPML) open-source set of tools by Zama. |
|
Try it yourself and don't forget to star on [Github](https://github.com/zama-ai/concrete-ml) ⭐. |
|
""" |
|
) |
|
|
|
gr.Markdown("\n\n") |
|
|
|
gr.Markdown( |
|
"""**Please Note**: This space is intended solely for educational and demonstration purposes. |
|
It should not be considered as a replacement for professional medical counsel, diagnosis, or therapy for any health or related issues. |
|
Any questions or concerns about your individual health should be addressed to your doctor or another qualified healthcare provider. |
|
""" |
|
) |
|
|
|
clear_button.click( |
|
reset_fn, |
|
outputs=[ |
|
one_hot_vector_box, |
|
one_hot_vector, |
|
submit_btn, |
|
|
|
error_box1, |
|
error_box2, |
|
error_box3, |
|
error_box4, |
|
error_box5, |
|
error_box6, |
|
error_box7, |
|
disease_box, |
|
default_symptoms, |
|
user_id_box, |
|
key_len_box, |
|
key_box, |
|
quant_vect_box, |
|
enc_vect_box, |
|
srv_resp_send_data_box, |
|
srv_resp_retrieve_data_box, |
|
fhe_execution_time_box, |
|
decrypt_box, |
|
*check_boxes, |
|
], |
|
) |
|
|
|
demo.launch() |
|
|