|
"""A Gradio app for anonymizing text data using FHE.""" |
|
|
|
import base64 |
|
import os |
|
import re |
|
import subprocess |
|
import time |
|
import uuid |
|
from typing import Dict, List |
|
|
|
import gradio as gr |
|
import numpy |
|
import pandas as pd |
|
import requests |
|
from fhe_anonymizer import FHEAnonymizer |
|
from openai import OpenAI |
|
from utils_demo import * |
|
|
|
from concrete.ml.deployment import FHEModelClient |
|
|
|
|
|
|
|
clean_directory() |
|
|
|
anonymizer = FHEAnonymizer() |
|
client = OpenAI(api_key=os.environ.get("openaikey")) |
|
|
|
|
|
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR) |
|
time.sleep(3) |
|
|
|
|
|
UUID_MAP = read_json(MAPPING_UUID_PATH) |
|
ANONYMIZED_DOCUMENT = read_txt(ANONYMIZED_FILE_PATH) |
|
MAPPING_ANONYMIZED_SENTENCES = read_pickle(MAPPING_ANONYMIZED_SENTENCES_PATH) |
|
MAPPING_ENCRYPTED_SENTENCES = read_pickle(MAPPING_ENCRYPTED_SENTENCES_PATH) |
|
ORIGINAL_DOCUMENT = read_txt(ORIGINAL_FILE_PATH).split("\n\n") |
|
MAPPING_DOC_EMBEDDING = read_pickle(MAPPING_DOC_EMBEDDING_PATH) |
|
|
|
print(f"{ORIGINAL_DOCUMENT=}\n") |
|
print(f"{MAPPING_DOC_EMBEDDING.keys()=}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
USER_ID = numpy.random.randint(0, 2**32) |
|
|
|
|
|
def select_static_anonymized_sentences_fn(selected_sentences: List): |
|
|
|
selected_sentences = [MAPPING_ANONYMIZED_SENTENCES[sentence] for sentence in selected_sentences] |
|
|
|
anonymized_selected_sentence = sorted(selected_sentences, key=lambda x: x[0]) |
|
|
|
anonymized_selected_sentence = [sentence for _, sentence in anonymized_selected_sentence] |
|
|
|
return "\n\n".join(anonymized_selected_sentence) |
|
|
|
|
|
def key_gen_fn() -> Dict: |
|
"""Generate keys for a given user.""" |
|
|
|
print("------------ Step 1: Key Generation:") |
|
|
|
print(f"Your user ID is: {USER_ID}....") |
|
|
|
|
|
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}") |
|
client.load() |
|
|
|
|
|
client.generate_private_and_evaluation_keys() |
|
|
|
|
|
serialized_evaluation_keys = client.get_serialized_evaluation_keys() |
|
assert isinstance(serialized_evaluation_keys, bytes) |
|
|
|
|
|
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key" |
|
|
|
write_bytes(evaluation_key_path, serialized_evaluation_keys) |
|
|
|
|
|
|
|
if not evaluation_key_path.is_file(): |
|
error_message = ( |
|
f"Error Encountered While generating the evaluation {evaluation_key_path.is_file()=}" |
|
) |
|
print(error_message) |
|
return {gen_key_btn: gr.update(value=error_message)} |
|
else: |
|
print("Keys have been generated ✅") |
|
return {gen_key_btn: gr.update(value="Keys have been generated ✅")} |
|
|
|
|
|
def encrypt_doc_fn(doc): |
|
|
|
print(f"\n------------ Step 2.1: Doc encryption: {doc=}") |
|
|
|
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file(): |
|
return {encrypted_doc_box: gr.update(value="Error ❌: Please generate the key first!", lines=10)} |
|
|
|
|
|
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}") |
|
client.load() |
|
|
|
encrypted_tokens = [] |
|
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", ' '.join(doc)) |
|
|
|
for token in tokens: |
|
if token.strip() and re.match(r"\w+", token): |
|
emb_x = MAPPING_DOC_EMBEDDING[token] |
|
assert emb_x.shape == (1, 1024) |
|
encrypted_x = client.quantize_encrypt_serialize(emb_x) |
|
assert isinstance(encrypted_x, bytes) |
|
encrypted_tokens.append(encrypted_x) |
|
|
|
print("Doc encrypted ✅ on Client Side") |
|
|
|
|
|
|
|
|
|
encrypted_quant_tokens_hex = [token.hex()[500:510] for token in encrypted_tokens] |
|
|
|
return { |
|
encrypted_doc_box: gr.update(value=" ".join(encrypted_quant_tokens_hex), lines=10), |
|
anonymized_doc_output: gr.update(visible=True, value=None), |
|
} |
|
|
|
|
|
def encrypt_query_fn(query): |
|
|
|
print(f"\n------------ Step 2: Query encryption: {query=}") |
|
|
|
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file(): |
|
return {output_encrypted_box: gr.update(value="Error ❌: Please generate the key first!", lines=8)} |
|
|
|
if is_user_query_valid(query): |
|
return { |
|
query_box: gr.update( |
|
value=( |
|
"Unable to process ❌: The request exceeds the length limit or falls " |
|
"outside the scope of this document. Please refine your query." |
|
) |
|
) |
|
} |
|
|
|
|
|
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}") |
|
client.load() |
|
|
|
encrypted_tokens = [] |
|
|
|
|
|
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", query) |
|
|
|
for token in tokens: |
|
|
|
|
|
if bool(re.match(r"^\s+$", token)): |
|
continue |
|
|
|
|
|
|
|
|
|
emb_x = get_batch_text_representation([token], EMBEDDINGS_MODEL, TOKENIZER) |
|
encrypted_x = client.quantize_encrypt_serialize(emb_x) |
|
assert isinstance(encrypted_x, bytes) |
|
|
|
encrypted_tokens.append(encrypted_x) |
|
|
|
print("Data encrypted ✅ on Client Side") |
|
|
|
assert len({len(token) for token in encrypted_tokens}) == 1 |
|
|
|
write_bytes(KEYS_DIR / f"{USER_ID}/encrypted_input", b"".join(encrypted_tokens)) |
|
write_bytes( |
|
KEYS_DIR / f"{USER_ID}/encrypted_input_len", len(encrypted_tokens[0]).to_bytes(10, "big") |
|
) |
|
|
|
encrypted_quant_tokens_hex = [token.hex()[500:580] for token in encrypted_tokens] |
|
|
|
return { |
|
output_encrypted_box: gr.update(value=" ".join(encrypted_quant_tokens_hex), lines=8), |
|
anonymized_query_output: gr.update(visible=True, value=None), |
|
identified_words_output_df: gr.update(visible=False, value=None), |
|
} |
|
|
|
|
|
def send_input_fn(query) -> Dict: |
|
"""Send the encrypted data and the evaluation key to the server.""" |
|
|
|
print("------------ Step 3.1: Send encrypted_data to the Server") |
|
|
|
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key" |
|
encrypted_input_path = KEYS_DIR / f"{USER_ID}/encrypted_input" |
|
encrypted_input_len_path = KEYS_DIR / f"{USER_ID}/encrypted_input_len" |
|
|
|
if not evaluation_key_path.is_file(): |
|
error_message = ( |
|
"Error Encountered While Sending Data to the Server: " |
|
f"The key has been generated correctly - {evaluation_key_path.is_file()=}" |
|
) |
|
return {anonymized_query_output: gr.update(value=error_message)} |
|
|
|
if not encrypted_input_path.is_file(): |
|
error_message = ( |
|
"Error Encountered While Sending Data to the Server: The data has not been encrypted " |
|
f"correctly on the client side - {encrypted_input_path.is_file()=}" |
|
) |
|
return {anonymized_query_output: gr.update(value=error_message)} |
|
|
|
|
|
data = {"user_id": USER_ID, "input": query} |
|
|
|
files = [ |
|
("files", open(evaluation_key_path, "rb")), |
|
("files", open(encrypted_input_path, "rb")), |
|
("files", open(encrypted_input_len_path, "rb")), |
|
] |
|
|
|
|
|
url = SERVER_URL + "send_input" |
|
|
|
with requests.post( |
|
url=url, |
|
data=data, |
|
files=files, |
|
) as resp: |
|
print("Data sent to the server ✅" if resp.ok else "Error ❌ in sending data to the server") |
|
|
|
|
|
def run_fhe_in_server_fn() -> Dict: |
|
"""Run in FHE the anonymization of the query""" |
|
|
|
print("------------ Step 3.2: Run in FHE on the Server Side") |
|
|
|
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key" |
|
encrypted_input_path = KEYS_DIR / f"{USER_ID}/encrypted_input" |
|
|
|
if not evaluation_key_path.is_file(): |
|
error_message = ( |
|
"Error Encountered While Sending Data to the Server: " |
|
f"The key has been generated correctly - {evaluation_key_path.is_file()=}" |
|
) |
|
return {anonymized_query_output: gr.update(value=error_message)} |
|
|
|
if not encrypted_input_path.is_file(): |
|
error_message = ( |
|
"Error Encountered While Sending Data to the Server: The data has not been encrypted " |
|
f"correctly on the client side - {encrypted_input_path.is_file()=}" |
|
) |
|
return {anonymized_query_output: gr.update(value=error_message)} |
|
|
|
data = { |
|
"user_id": USER_ID, |
|
} |
|
|
|
url = SERVER_URL + "run_fhe" |
|
|
|
with requests.post( |
|
url=url, |
|
data=data, |
|
) as response: |
|
if not response.ok: |
|
return { |
|
anonymized_query_output: gr.update( |
|
value=( |
|
"⚠️ An error occurred on the Server Side. " |
|
"Please check connectivity and data transmission." |
|
), |
|
), |
|
} |
|
else: |
|
time.sleep(1) |
|
print(f"The query anonymization was computed in {response.json():.2f} s per token.") |
|
|
|
|
|
def get_output_fn() -> Dict: |
|
|
|
print("------------ Step 3.3: Get the output from the Server Side") |
|
|
|
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file(): |
|
error_message = ( |
|
"Error Encountered While Sending Data to the Server: " |
|
"The key has not been generated correctly" |
|
) |
|
return {anonymized_query_output: gr.update(value=error_message)} |
|
|
|
if not (KEYS_DIR / f"{USER_ID}/encrypted_input").is_file(): |
|
error_message = ( |
|
"Error Encountered While Sending Data to the Server: " |
|
"The data has not been encrypted correctly on the client side" |
|
) |
|
return {anonymized_query_output: gr.update(value=error_message)} |
|
|
|
data = { |
|
"user_id": USER_ID, |
|
} |
|
|
|
|
|
url = SERVER_URL + "get_output" |
|
with requests.post( |
|
url=url, |
|
data=data, |
|
) as response: |
|
if response.ok: |
|
print("Data received ✅ from the remote Server") |
|
response_data = response.json() |
|
encrypted_output_base64 = response_data["encrypted_output"] |
|
length_encrypted_output_base64 = response_data["length"] |
|
|
|
|
|
encrypted_output = base64.b64decode(encrypted_output_base64) |
|
length_encrypted_output = base64.b64decode(length_encrypted_output_base64) |
|
|
|
|
|
|
|
|
|
write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output", encrypted_output) |
|
write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len", length_encrypted_output) |
|
|
|
else: |
|
print("Error ❌ in getting data to the server") |
|
|
|
|
|
def decrypt_fn(text) -> Dict: |
|
"""Dencrypt the data on the `Client Side`.""" |
|
|
|
print("------------ Step 4: Dencrypt the data on the `Client Side`") |
|
|
|
|
|
encrypted_output_path = CLIENT_DIR / f"{USER_ID}_encrypted_output" |
|
|
|
if not encrypted_output_path.is_file(): |
|
error_message = """⚠️ Please ensure that: \n |
|
- the connectivity \n |
|
- the query has been submitted \n |
|
- the evaluation key has been generated \n |
|
- the server processed the encrypted data \n |
|
- the Client received the data from the Server before decrypting the prediction |
|
""" |
|
print(error_message) |
|
|
|
return error_message, None |
|
|
|
|
|
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}") |
|
client.load() |
|
|
|
|
|
encrypted_output = read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output") |
|
length = int.from_bytes(read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len"), "big") |
|
|
|
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", text) |
|
|
|
decrypted_output, identified_words_with_prob = [], [] |
|
|
|
i = 0 |
|
for token in tokens: |
|
|
|
|
|
if bool(re.match(r"^\s+$", token)): |
|
continue |
|
else: |
|
encrypted_token = encrypted_output[i : i + length] |
|
prediction_proba = client.deserialize_decrypt_dequantize(encrypted_token) |
|
probability = prediction_proba[0][1] |
|
i += length |
|
|
|
if probability >= 0.77: |
|
identified_words_with_prob.append((token, probability)) |
|
|
|
|
|
tmp_uuid = UUID_MAP.get(token, str(uuid.uuid4())[:8]) |
|
decrypted_output.append(tmp_uuid) |
|
UUID_MAP[token] = tmp_uuid |
|
else: |
|
decrypted_output.append(token) |
|
|
|
|
|
write_json(MAPPING_UUID_PATH, UUID_MAP) |
|
|
|
|
|
anonymized_text = re.sub(r"\s([,.!?;:])", r"\1", " ".join(decrypted_output)) |
|
|
|
|
|
if identified_words_with_prob: |
|
identified_df = pd.DataFrame( |
|
identified_words_with_prob, columns=["Identified Words", "Probability"] |
|
) |
|
else: |
|
identified_df = pd.DataFrame(columns=["Identified Words", "Probability"]) |
|
|
|
print("Decryption done ✅ on Client Side") |
|
|
|
return anonymized_text, identified_df |
|
|
|
|
|
def anonymization_with_fn(selected_sentences, query): |
|
|
|
encrypt_query_fn(query) |
|
|
|
send_input_fn(query) |
|
|
|
run_fhe_in_server_fn() |
|
|
|
get_output_fn() |
|
|
|
anonymized_text, identified_df = decrypt_fn(query) |
|
|
|
return { |
|
anonymized_doc_output: gr.update(value=select_static_anonymized_sentences_fn(selected_sentences)), |
|
anonymized_query_output: gr.update(value=anonymized_text), |
|
identified_words_output_df: gr.update(value=identified_df, visible=False), |
|
} |
|
|
|
|
|
def query_chatgpt_fn(anonymized_query, anonymized_document): |
|
|
|
print("------------ Step 5: ChatGPT communication") |
|
|
|
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file(): |
|
error_message = "Error ❌: Please generate the key first!" |
|
return {chatgpt_response_anonymized: gr.update(value=error_message)} |
|
|
|
if not (CLIENT_DIR / f"{USER_ID}_encrypted_output").is_file(): |
|
error_message = "Error ❌: Please encrypt your query first!" |
|
return {chatgpt_response_anonymized: gr.update(value=error_message)} |
|
|
|
context_prompt = read_txt(PROMPT_PATH) |
|
|
|
|
|
query = ( |
|
"Document content:\n```\n" |
|
+ anonymized_document |
|
+ "\n\n```" |
|
+ "Query:\n```\n" |
|
+ anonymized_query |
|
+ "\n```" |
|
) |
|
print(f'Prompt of CHATGPT:\n{query}') |
|
|
|
completion = client.chat.completions.create( |
|
model="gpt-4-1106-preview", |
|
messages=[ |
|
{"role": "system", "content": context_prompt}, |
|
{"role": "user", "content": query}, |
|
], |
|
) |
|
anonymized_response = completion.choices[0].message.content |
|
uuid_map = read_json(MAPPING_UUID_PATH) |
|
|
|
inverse_uuid_map = { |
|
v: k for k, v in uuid_map.items() |
|
} |
|
|
|
|
|
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", anonymized_response) |
|
processed_tokens = [] |
|
|
|
for token in tokens: |
|
|
|
if not token.strip() or not re.match(r"\w+", token): |
|
processed_tokens.append(token) |
|
continue |
|
|
|
if token in inverse_uuid_map: |
|
processed_tokens.append(inverse_uuid_map[token]) |
|
else: |
|
processed_tokens.append(token) |
|
deanonymized_response = "".join(processed_tokens) |
|
|
|
return {chatgpt_response_anonymized: gr.update(value=anonymized_response), |
|
chatgpt_response_deanonymized: gr.update(value=deanonymized_response)} |
|
|
|
|
|
demo = gr.Blocks(css=".markdown-body { font-size: 18px; }") |
|
|
|
with demo: |
|
|
|
gr.Markdown( |
|
""" |
|
<p align="center"> |
|
<img width=200 src="file/images/logos/zama.jpg"> |
|
</p> |
|
<h1 style="text-align: center;">Encrypted Anonymization Using Fully Homomorphic Encryption</h1> |
|
<p align="center"> |
|
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/github.png">Concrete-ML</a> |
|
— |
|
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/documentation.png">Documentation</a> |
|
— |
|
<a href=" https://community.zama.ai/c/concrete-ml/8"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/community.png">Community</a> |
|
— |
|
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/x.png">@zama_fhe</a> |
|
</p> |
|
""" |
|
) |
|
|
|
gr.Markdown( |
|
""" |
|
<p align="center" style="font-size: 16px;"> |
|
Anonymization is the process of removing personally identifiable information (PII) data from |
|
a document in order to protect individual privacy.</p> |
|
|
|
<p align="center" style="font-size: 16px;"> |
|
Encrypted anonymization uses Fully Homomorphic Encryption (FHE) to anonymize personally |
|
identifiable information (PII) within encrypted documents, enabling computations to be |
|
performed on the encrypted data.</p> |
|
|
|
<p align="center" style="font-size: 16px;"> |
|
In the example above, we're showing how encrypted anonymization can be leveraged to use LLM |
|
services such as ChaGPT in a privacy-preserving manner.</p> |
|
""" |
|
) |
|
|
|
gr.Markdown( |
|
""" |
|
<p align="center"> |
|
<img width="75%" height="30%" src="https://raw.githubusercontent.com/kcelia/Img/main/fhe_anonymization_banner.png"> |
|
</p> |
|
""" |
|
) |
|
|
|
|
|
|
|
|
|
gr.Markdown( |
|
"## Step 1: Generate the keys\n\n" |
|
"""In Fully Homomorphic Encryption (FHE) methods, two types of keys are created. The first |
|
type, called secret keys, are used to encrypt and decrypt the user's data. The second type, |
|
called evaluation keys, enable a server to work on the encrypted data without seeing the |
|
actual data. |
|
""" |
|
) |
|
|
|
gen_key_btn = gr.Button("Generate the secret and evaluation keys") |
|
|
|
gen_key_btn.click( |
|
key_gen_fn, |
|
inputs=[], |
|
outputs=[gen_key_btn], |
|
) |
|
|
|
|
|
|
|
gr.Markdown("<hr />") |
|
gr.Markdown("## Step 2.1: Select the document you want to encrypt\n\n" |
|
"""To make it simple, we pre-compiled the following document, but you are free to choose |
|
on which part you want to run this example. |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=5): |
|
original_sentences_box = gr.CheckboxGroup( |
|
ORIGINAL_DOCUMENT, |
|
value=ORIGINAL_DOCUMENT, |
|
label="Contract:", |
|
show_label=True, |
|
) |
|
|
|
with gr.Column(scale=1, min_width=6): |
|
gr.HTML("<div style='height: 77px;'></div>") |
|
encrypt_doc_btn = gr.Button("Encrypt the document") |
|
|
|
with gr.Column(scale=5): |
|
encrypted_doc_box = gr.Textbox( |
|
label="Encrypted document:", show_label=True, interactive=False, lines=10 |
|
) |
|
|
|
|
|
|
|
|
|
gr.Markdown("<hr />") |
|
gr.Markdown("## Step 2.2: Select the prompt you want to encrypt\n\n" |
|
"""Please choose from the predefined options in |
|
<span style='color:grey'>“Prompt examples”</span> or craft a custom question in |
|
the <span style='color:grey'>“Customized prompt”</span> text box. |
|
Remain concise and relevant to the context. Any off-topic query will not be processed.""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=5): |
|
|
|
with gr.Column(scale=5): |
|
default_query_box = gr.Dropdown( |
|
list(DEFAULT_QUERIES.values()), label="PROMPT EXAMPLES:" |
|
) |
|
|
|
gr.Markdown("Or") |
|
|
|
query_box = gr.Textbox( |
|
value="What is Kate international bank account number?", label="CUSTOMIZED PROMPT:", interactive=True |
|
) |
|
|
|
default_query_box.change( |
|
fn=lambda default_query_box: default_query_box, |
|
inputs=[default_query_box], |
|
outputs=[query_box], |
|
) |
|
|
|
with gr.Column(scale=1, min_width=6): |
|
gr.HTML("<div style='height: 77px;'></div>") |
|
encrypt_query_btn = gr.Button("Encrypt the prompt") |
|
|
|
|
|
with gr.Column(scale=5): |
|
output_encrypted_box = gr.Textbox( |
|
label="Encrypted anonymized query that will be sent to the anonymization server:", |
|
lines=8, |
|
) |
|
|
|
|
|
|
|
gr.Markdown("<hr />") |
|
gr.Markdown("## Step 3: Anonymize the document and the prompt using FHE") |
|
gr.Markdown( |
|
"""Once the client encrypts the document and the prompt locally, it will be sent to a remote |
|
server to perform the anonymization on encrypted data. When the computation is done, the |
|
server will return the result to the client for decryption. |
|
""" |
|
) |
|
|
|
run_fhe_btn = gr.Button("Anonymize using FHE") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=5): |
|
|
|
anonymized_doc_output = gr.Textbox( |
|
label="Decrypted and anonymized document", lines=10, interactive=True |
|
) |
|
|
|
with gr.Column(scale=5): |
|
|
|
anonymized_query_output = gr.Textbox( |
|
label="Decrypted and anonymized prompt", lines=10, interactive=True |
|
) |
|
|
|
|
|
identified_words_output_df = gr.Dataframe(label="Identified words:", visible=False) |
|
|
|
encrypt_doc_btn.click( |
|
fn=encrypt_doc_fn, |
|
inputs=[original_sentences_box], |
|
outputs=[encrypted_doc_box, anonymized_doc_output], |
|
) |
|
|
|
encrypt_query_btn.click( |
|
fn=encrypt_query_fn, |
|
inputs=[query_box], |
|
outputs=[ |
|
query_box, |
|
output_encrypted_box, |
|
anonymized_query_output, |
|
identified_words_output_df, |
|
], |
|
) |
|
|
|
run_fhe_btn.click( |
|
anonymization_with_fn, |
|
inputs=[original_sentences_box, query_box], |
|
outputs=[anonymized_doc_output, anonymized_query_output, identified_words_output_df], |
|
) |
|
|
|
|
|
|
|
gr.Markdown("<hr />") |
|
gr.Markdown("## Step 4: Send anonymized prompt to ChatGPT") |
|
gr.Markdown( |
|
"""After securely anonymizing the query with FHE, |
|
you can forward it to ChatGPT without having any concern about information leakage.""" |
|
) |
|
|
|
chatgpt_button = gr.Button("Query ChatGPT") |
|
|
|
with gr.Row(): |
|
chatgpt_response_anonymized = gr.Textbox(label="ChatGPT's anonymized response:", lines=5) |
|
chatgpt_response_deanonymized = gr.Textbox( |
|
label="ChatGPT's non-anonymized response:", lines=5 |
|
) |
|
|
|
chatgpt_button.click( |
|
query_chatgpt_fn, |
|
inputs=[anonymized_query_output, anonymized_doc_output], |
|
outputs=[chatgpt_response_anonymized, chatgpt_response_deanonymized], |
|
) |
|
|
|
gr.Markdown( |
|
"""**Please note**: As this space is intended solely for demonstration purposes, some |
|
private information may be missed during by the anonymization algorithm. Please validate the |
|
following query before sending it to ChatGPT.""" |
|
) |
|
|
|
demo.launch(share=False) |
|
|