encrypted-anonymization / utils_demo.py
jfrery-zama's picture
update representation with roberta + new fast model
1dfccc3
raw
history blame
955 Bytes
import torch
import numpy as np
import random
def get_batch_text_representation(texts, model, tokenizer, batch_size=1):
"""
Get mean-pooled representations of given texts in batches.
"""
mean_pooled_batch = []
for i in range(0, len(texts), batch_size):
batch_texts = texts[i:i+batch_size]
inputs = tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs, output_hidden_states=False)
last_hidden_states = outputs.last_hidden_state
input_mask_expanded = inputs['attention_mask'].unsqueeze(-1).expand(last_hidden_states.size()).float()
sum_embeddings = torch.sum(last_hidden_states * input_mask_expanded, 1)
sum_mask = input_mask_expanded.sum(1)
mean_pooled = sum_embeddings / sum_mask
mean_pooled_batch.extend(mean_pooled.cpu().detach().numpy())
return np.array(mean_pooled_batch)