|
"""A Gradio app for anonymizing text data using FHE.""" |
|
|
|
import gradio as gr |
|
from fhe_anonymizer import FHEAnonymizer |
|
import pandas as pd |
|
from openai import OpenAI |
|
import os |
|
import json |
|
import re |
|
|
|
anonymizer = FHEAnonymizer() |
|
|
|
client = OpenAI( |
|
api_key=os.environ.get("openaikey"), |
|
) |
|
|
|
|
|
def deidentify_text(input_text): |
|
anonymized_text, identified_words_with_prob = anonymizer(input_text) |
|
|
|
|
|
if identified_words_with_prob: |
|
identified_df = pd.DataFrame( |
|
identified_words_with_prob, columns=["Identified Words", "Probability"] |
|
) |
|
else: |
|
identified_df = pd.DataFrame(columns=["Identified Words", "Probability"]) |
|
return anonymized_text, identified_df |
|
|
|
|
|
def query_chatgpt(anonymized_query): |
|
|
|
with open("files/anonymized_document.txt", "r") as file: |
|
anonymized_document = file.read() |
|
with open("files/chatgpt_prompt.txt", "r") as file: |
|
prompt = file.read() |
|
|
|
|
|
full_prompt = ( |
|
prompt + "\n" |
|
) |
|
query = "Document content:\n```\n" + anonymized_document + "\n\n```" + "Query:\n```\n" + anonymized_query + "\n```" |
|
print(full_prompt) |
|
|
|
completion = client.chat.completions.create( |
|
model="gpt-4-1106-preview", |
|
messages=[ |
|
{"role": "system", "content": prompt}, |
|
{"role": "user", "content": query}, |
|
], |
|
) |
|
anonymized_response = completion.choices[0].message.content |
|
with open("original_document_uuid_mapping.json", "r") as file: |
|
uuid_map = json.load(file) |
|
inverse_uuid_map = {v: k for k, v in uuid_map.items()} |
|
|
|
|
|
token_pattern = r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)" |
|
tokens = re.findall(token_pattern, anonymized_response) |
|
processed_tokens = [] |
|
|
|
|
|
for token in tokens: |
|
|
|
if not token.strip() or not re.match(r"\w+", token): |
|
processed_tokens.append(token) |
|
continue |
|
|
|
if token in inverse_uuid_map: |
|
processed_tokens.append(inverse_uuid_map[token]) |
|
else: |
|
processed_tokens.append(token) |
|
deanonymized_response = "".join(processed_tokens) |
|
return anonymized_response, deanonymized_response |
|
|
|
|
|
|
|
with open("demo_text.txt", "r") as file: |
|
default_demo_text = file.read() |
|
|
|
with open("files/original_document.txt", "r") as file: |
|
original_document = file.read() |
|
|
|
with open("files/anonymized_document.txt", "r") as file: |
|
anonymized_document = file.read() |
|
|
|
demo = gr.Blocks(css=".markdown-body { font-size: 18px; }") |
|
|
|
with demo: |
|
|
|
gr.Markdown( |
|
""" |
|
<p align="center"> |
|
<img width=200 src="file/images/logos/zama.jpg"> |
|
</p> |
|
<h1 style="text-align: center;">Encrypted Anonymization Using Fully Homomorphic Encryption</h1> |
|
<p align="center"> |
|
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/github.png">Concrete-ML</a> |
|
β |
|
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/documentation.png">Documentation</a> |
|
β |
|
<a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/community.png">Community</a> |
|
β |
|
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/x.png">@zama_fhe</a> |
|
</p> |
|
""" |
|
) |
|
|
|
with gr.Accordion("What is Encrypted Anonymization?", open=False): |
|
gr.Markdown( |
|
""" |
|
Encrypted Anonymization leverages Fully Homomorphic Encryption (FHE) to protect sensitive information during data processing. This approach allows for the anonymization of text data, such as personal identifiers, while ensuring that the data remains encrypted throughout the entire process. |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Accordion("Original Document", open=True): |
|
gr.Markdown(original_document) |
|
|
|
with gr.Accordion("Anonymized Document", open=True): |
|
gr.Markdown(anonymized_document) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Row(): |
|
input_text = gr.Textbox( |
|
value=default_demo_text, |
|
lines=1, |
|
placeholder="Input text here...", |
|
label="Input", |
|
) |
|
|
|
|
|
example_queries = ["Example Query 1", "Example Query 2", "Example Query 3"] |
|
examples_radio = gr.Radio(choices=example_queries, label="Example Queries") |
|
|
|
examples_radio.change(lambda example_query: example_query, inputs=[examples_radio], outputs=[input_text]) |
|
|
|
anonymized_text_output = gr.Textbox(label="Anonymized Text with FHE", lines=1, interactive=True) |
|
|
|
identified_words_output = gr.Dataframe(label="Identified Words", visible=False) |
|
|
|
submit_button = gr.Button("Anonymize with FHE") |
|
|
|
submit_button.click( |
|
deidentify_text, |
|
inputs=[input_text], |
|
outputs=[anonymized_text_output, identified_words_output], |
|
) |
|
|
|
with gr.Row(): |
|
chatgpt_response_anonymized = gr.Textbox(label="ChatGPT Anonymized Response", lines=13) |
|
chatgpt_response_deanonymized = gr.Textbox(label="ChatGPT Deanonymized Response", lines=13) |
|
|
|
chatgpt_button = gr.Button("Query ChatGPT") |
|
chatgpt_button.click( |
|
query_chatgpt, |
|
inputs=[anonymized_text_output], |
|
outputs=[chatgpt_response_anonymized, chatgpt_response_deanonymized], |
|
) |
|
|
|
|
|
demo.launch(share=False) |
|
|