Spaces:
Running
Running
File size: 7,829 Bytes
74b1efd 01fddc0 74b1efd d906b98 74b1efd d906b98 74b1efd d906b98 c0e541b df85b6e 74b1efd 48d8572 c0e541b 74b1efd c4e4d19 01fddc0 74b1efd 48d8572 74b1efd 01fddc0 74b1efd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import argparse
import os
import pathlib
from urllib.parse import urlparse
import warnings
import numpy as np
import whisper
import torch
from app import LANGUAGES, WhisperTranscriber
from src.download import download_url
from src.utils import optional_float, optional_int, str2bool
from src.whisperContainer import WhisperContainer
def cli():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe")
parser.add_argument("--model", default="small", choices=["tiny", "base", "small", "medium", "large"], help="name of the Whisper model to use")
parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default")
parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference")
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
parser.add_argument("--verbose", type=str2bool, default=True, help="whether to print out the progress and debug messages")
parser.add_argument("--task", type=str, default="transcribe", choices=["transcribe", "translate"], help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')")
parser.add_argument("--language", type=str, default=None, choices=sorted(LANGUAGES), help="language spoken in the audio, specify None to perform language detection")
parser.add_argument("--vad", type=str, default="none", choices=["none", "silero-vad", "silero-vad-skip-gaps", "silero-vad-expand-into-gaps", "periodic-vad"], help="The voice activity detection algorithm to use")
parser.add_argument("--vad_merge_window", type=optional_float, default=5, help="The window size (in seconds) to merge voice segments")
parser.add_argument("--vad_max_merge_size", type=optional_float, default=30, help="The maximum size (in seconds) of a voice segment")
parser.add_argument("--vad_padding", type=optional_float, default=1, help="The padding (in seconds) to add to each voice segment")
parser.add_argument("--vad_prompt_window", type=optional_float, default=3, help="The window size of the prompt to pass to Whisper")
parser.add_argument("--vad_cpu_cores", type=int, default=1, help="The number of CPU cores to use for VAD pre-processing.")
parser.add_argument("--vad_parallel_devices", type=str, default="", help="A commma delimited list of CUDA devices to use for parallel processing. If None, disable parallel processing.")
parser.add_argument("--temperature", type=float, default=0, help="temperature to use for sampling")
parser.add_argument("--best_of", type=optional_int, default=5, help="number of candidates when sampling with non-zero temperature")
parser.add_argument("--beam_size", type=optional_int, default=5, help="number of beams in beam search, only applicable when temperature is zero")
parser.add_argument("--patience", type=float, default=None, help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search")
parser.add_argument("--length_penalty", type=float, default=None, help="optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple lengt normalization by default")
parser.add_argument("--suppress_tokens", type=str, default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations")
parser.add_argument("--initial_prompt", type=str, default=None, help="optional text to provide as a prompt for the first window.")
parser.add_argument("--condition_on_previous_text", type=str2bool, default=True, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop")
parser.add_argument("--fp16", type=str2bool, default=True, help="whether to perform inference in fp16; True by default")
parser.add_argument("--temperature_increment_on_fallback", type=optional_float, default=0.2, help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below")
parser.add_argument("--compression_ratio_threshold", type=optional_float, default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed")
parser.add_argument("--logprob_threshold", type=optional_float, default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed")
parser.add_argument("--no_speech_threshold", type=optional_float, default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence")
args = parser.parse_args().__dict__
model_name: str = args.pop("model")
model_dir: str = args.pop("model_dir")
output_dir: str = args.pop("output_dir")
device: str = args.pop("device")
os.makedirs(output_dir, exist_ok=True)
if model_name.endswith(".en") and args["language"] not in {"en", "English"}:
warnings.warn(f"{model_name} is an English-only model but receipted '{args['language']}'; using English instead.")
args["language"] = "en"
temperature = args.pop("temperature")
temperature_increment_on_fallback = args.pop("temperature_increment_on_fallback")
if temperature_increment_on_fallback is not None:
temperature = tuple(np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback))
else:
temperature = [temperature]
vad = args.pop("vad")
vad_merge_window = args.pop("vad_merge_window")
vad_max_merge_size = args.pop("vad_max_merge_size")
vad_padding = args.pop("vad_padding")
vad_prompt_window = args.pop("vad_prompt_window")
vad_cpu_cores = args.pop("vad_cpu_cores")
model = WhisperContainer(model_name, device=device, download_root=model_dir)
transcriber = WhisperTranscriber(delete_uploaded_files=False, vad_cpu_cores=vad_cpu_cores)
transcriber.set_parallel_devices(args.pop("vad_parallel_devices"))
if (transcriber._has_parallel_devices()):
print("Using parallel devices:", transcriber.parallel_device_list)
for audio_path in args.pop("audio"):
sources = []
# Detect URL and download the audio
if (uri_validator(audio_path)):
# Download from YouTube/URL directly
for source_path in download_url(audio_path, maxDuration=-1, destinationDirectory=output_dir, playlistItems=None):
source_name = os.path.basename(source_path)
sources.append({ "path": source_path, "name": source_name })
else:
sources.append({ "path": audio_path, "name": os.path.basename(audio_path) })
for source in sources:
source_path = source["path"]
source_name = source["name"]
result = transcriber.transcribe_file(model, source_path, temperature=temperature,
vad=vad, vadMergeWindow=vad_merge_window, vadMaxMergeSize=vad_max_merge_size,
vadPadding=vad_padding, vadPromptWindow=vad_prompt_window, **args)
transcriber.write_result(result, source_name, output_dir)
transcriber.close()
def uri_validator(x):
try:
result = urlparse(x)
return all([result.scheme, result.netloc])
except:
return False
if __name__ == '__main__':
cli() |