Spaces:
Sleeping
Sleeping
File size: 3,821 Bytes
05a2178 7ce6041 05a2178 7ce6041 05a2178 7ce6041 05a2178 7ce6041 05a2178 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
from io import StringIO
import gradio as gr
from utils import write_vtt
import whisper
import ffmpeg
#import os
#os.system("pip install git+https://github.com/openai/whisper.git")
# Limitations (set to -1 to disable)
INPUT_AUDIO_MAX_DURATION = 60 # seconds
LANGUAGES = [
"English",
"Chinese",
"German",
"Spanish",
"Russian",
"Korean",
"French",
"Japanese",
"Portuguese",
"Turkish",
"Polish",
"Catalan",
"Dutch",
"Arabic",
"Swedish",
"Italian",
"Indonesian",
"Hindi",
"Finnish",
"Vietnamese",
"Hebrew",
"Ukrainian",
"Greek",
"Malay",
"Czech",
"Romanian",
"Danish",
"Hungarian",
"Tamil",
"Norwegian",
"Thai",
"Urdu",
"Croatian",
"Bulgarian",
"Lithuanian",
"Latin",
"Maori",
"Malayalam",
"Welsh",
"Slovak",
"Telugu",
"Persian",
"Latvian",
"Bengali",
"Serbian",
"Azerbaijani",
"Slovenian",
"Kannada",
"Estonian",
"Macedonian",
"Breton",
"Basque",
"Icelandic",
"Armenian",
"Nepali",
"Mongolian",
"Bosnian",
"Kazakh",
"Albanian",
"Swahili",
"Galician",
"Marathi",
"Punjabi",
"Sinhala",
"Khmer",
"Shona",
"Yoruba",
"Somali",
"Afrikaans",
"Occitan",
"Georgian",
"Belarusian",
"Tajik",
"Sindhi",
"Gujarati",
"Amharic",
"Yiddish",
"Lao",
"Uzbek",
"Faroese",
"Haitian Creole",
"Pashto",
"Turkmen",
"Nynorsk",
"Maltese",
"Sanskrit",
"Luxembourgish",
"Myanmar",
"Tibetan",
"Tagalog",
"Malagasy",
"Assamese",
"Tatar",
"Hawaiian",
"Lingala",
"Hausa",
"Bashkir",
"Javanese",
"Sundanese"
]
model_cache = dict()
def greet(modelName, languageName, uploadFile, microphoneData, task):
source = uploadFile if uploadFile is not None else microphoneData
selectedLanguage = languageName.lower() if len(languageName) > 0 else None
selectedModel = modelName if modelName is not None else "base"
if INPUT_AUDIO_MAX_DURATION > 0:
# Calculate audio length
audioDuration = ffmpeg.probe(source)["format"]["duration"]
if float(audioDuration) > INPUT_AUDIO_MAX_DURATION:
return ("[ERROR]: Maximum audio file length is " + str(INPUT_AUDIO_MAX_DURATION) + "s, file was " + str(audioDuration) + "s"), "[ERROR]"
model = model_cache.get(selectedModel, None)
if not model:
model = whisper.load_model(selectedModel)
model_cache[selectedModel] = model
result = model.transcribe(source, language=selectedLanguage, task=task)
segmentStream = StringIO()
write_vtt(result["segments"], file=segmentStream)
segmentStream.seek(0)
return result["text"], segmentStream.read()
ui_description = "Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse "
ui_description += " audio and is also a multi-task model that can perform multilingual speech recognition "
ui_description += " as well as speech translation and language identification. "
if INPUT_AUDIO_MAX_DURATION > 0:
ui_description += "\n\n" + "Max audio file length: " + str(INPUT_AUDIO_MAX_DURATION) + " s"
demo = gr.Interface(fn=greet, description=ui_description, inputs=[
gr.Dropdown(choices=["tiny", "base", "small", "medium", "large"], value="medium", label="Model"),
gr.Dropdown(choices=sorted(LANGUAGES), label="Language"),
gr.Audio(source="upload", type="filepath", label="Upload Audio"),
gr.Audio(source="microphone", type="filepath", label="Microphone Input"),
gr.Dropdown(choices=["transcribe", "translate"], label="Task"),
], outputs=[gr.Text(label="Transcription"), gr.Text(label="Segments")])
demo.launch() |