Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline, AutoTokenizer | |
############## | |
# <Greeting> | |
# def greet(name): | |
# return f"Hello {name}!" | |
# demo = gr.Interface(fn=greet, inputs="text", outputs="text") | |
############## | |
# <Hotdog Not Hotdog> | |
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") | |
# def predict(image): | |
# predictions = pipeline(image) | |
# return {p["label"]: p["score"] for p in predictions} | |
# demo = gr.Interface( | |
# predict, | |
# inputs=gr.inputs.Image(label="Upload hot dog candidate", type="filepath"), | |
# outputs=gr.outputs.Label(num_top_classes=2), | |
# title="Hot Dog? Or Not?" | |
# ) | |
tokenizer = AutoTokenizer.from_pretrained("alabnii/jmedroberta-base-manbyo-wordpiece", **{ | |
"mecab_kwargs": { | |
"mecab_option": "-u MANBYO_201907_Dic-utf8.dic" | |
} | |
}) | |
pipeline = pipeline( | |
"fill-mask", | |
model="alabnii/jmedroberta-base-manbyo-wordpiece", | |
tokenizer=tokenizer, | |
top_k=20 | |
) | |
def fill(text): | |
filled = pipeline(text) | |
return {x["token_str"]: x["score"] for x in filled} | |
demo = gr.Interface( | |
fill, | |
inputs="text", | |
outputs=gr.Label(label="Output"), | |
title="fill-mask", | |
examples=[['この患者は[MASK]と診断された。']] | |
) | |
demo.launch() | |