yuragoithf
commited on
Commit
·
d8c2d8e
1
Parent(s):
bc22eb1
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from presidio_anonymizer import AnonymizerEngine
|
6 |
+
from presidio_analyzer import AnalyzerEngine
|
7 |
+
from presidio_anonymizer.entities import RecognizerResult, OperatorConfig
|
8 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
9 |
+
|
10 |
+
|
11 |
+
# Initialize the engine:
|
12 |
+
analyzer = AnalyzerEngine()
|
13 |
+
anonymizer = AnonymizerEngine()
|
14 |
+
|
15 |
+
# Create pipeline
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER-uncased")
|
17 |
+
tokenizer.add_tokens('<person>')
|
18 |
+
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER-uncased")
|
19 |
+
pipe = pipeline(model=model, tokenizer=tokenizer, task='ner')
|
20 |
+
|
21 |
+
# https://microsoft.github.io/presidio/supported_entities/
|
22 |
+
ENT_TYPES = [
|
23 |
+
# 'PERSON',
|
24 |
+
'CREDIT_CARD',
|
25 |
+
'EMAIL_ADDRESS',
|
26 |
+
'IP_ADDRESS',
|
27 |
+
'PHONE_NUMBER'
|
28 |
+
]
|
29 |
+
|
30 |
+
def mask_names_hf(text):
|
31 |
+
# Tokenize inputs
|
32 |
+
inputs = tokenizer(text, return_tensors='pt', truncation=True)
|
33 |
+
tokens = inputs.tokens()
|
34 |
+
|
35 |
+
# Make inferences
|
36 |
+
outputs = model(**inputs).logits
|
37 |
+
predictions = torch.argmax(outputs, dim=2)
|
38 |
+
|
39 |
+
# Replace tokens that are people with <PERSON>
|
40 |
+
words = []
|
41 |
+
for token, prediction in zip(tokens, predictions[0].numpy()):
|
42 |
+
prediction = model.config.id2label[prediction]
|
43 |
+
if prediction not in ('I-PER', 'B-PER'):
|
44 |
+
words.append(token)
|
45 |
+
elif prediction == 'B-PER':
|
46 |
+
if words[-1] != '<PERSON>':
|
47 |
+
words.append('<PERSON>')
|
48 |
+
else:
|
49 |
+
pass
|
50 |
+
# Convert those tokens to a string
|
51 |
+
return tokenizer.convert_tokens_to_string(words[1:-1])
|
52 |
+
|
53 |
+
def anonymize(text, min_len=3):
|
54 |
+
|
55 |
+
# Find and replace other stuff (Presidio NER)
|
56 |
+
ents = analyzer.analyze(text, language='en', entities=ENT_TYPES)
|
57 |
+
results = anonymizer.anonymize(text, analyzer_results=ents)
|
58 |
+
t = results.text
|
59 |
+
|
60 |
+
# Find and replace names (HF NER)
|
61 |
+
t = mask_names_hf(t)
|
62 |
+
|
63 |
+
pats = re.findall('<.+?>', t)
|
64 |
+
for p in pats:
|
65 |
+
t = t.replace(p, p.upper().replace(' ', ''))
|
66 |
+
|
67 |
+
|
68 |
+
t = t.replace('<PERSON><PERSON>', '<PERSON>')
|
69 |
+
return t
|
70 |
+
|
71 |
+
title = "Personal Info Remover"
|
72 |
+
description = """Personal Info Remover"""
|
73 |
+
|
74 |
+
gr.Interface(
|
75 |
+
anonymize,
|
76 |
+
inputs='text',
|
77 |
+
outputs='text',
|
78 |
+
title=title,
|
79 |
+
description=description,
|
80 |
+
examples=["My name is Yuriy, contacts info: 0-800-123-456, [email protected], IP address is 1.0.0.1"]
|
81 |
+
).launch(debug=True)
|