Spaces:
Sleeping
Sleeping
File size: 14,057 Bytes
4e4a175 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import os
import sys
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image
def convert_box_xywh_to_xyxy(box):
x1 = box[0]
y1 = box[1]
x2 = box[0] + box[2]
y2 = box[1] + box[3]
return [x1, y1, x2, y2]
def segment_image(image, bbox):
image_array = np.array(image)
segmented_image_array = np.zeros_like(image_array)
x1, y1, x2, y2 = bbox
segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2]
segmented_image = Image.fromarray(segmented_image_array)
black_image = Image.new("RGB", image.size, (255, 255, 255))
# transparency_mask = np.zeros_like((), dtype=np.uint8)
transparency_mask = np.zeros(
(image_array.shape[0], image_array.shape[1]), dtype=np.uint8
)
transparency_mask[y1:y2, x1:x2] = 255
transparency_mask_image = Image.fromarray(transparency_mask, mode="L")
black_image.paste(segmented_image, mask=transparency_mask_image)
return black_image
def format_results(masks, scores, logits, filter=0):
annotations = []
n = len(scores)
for i in range(n):
annotation = {}
mask = masks[i]
tmp = np.where(mask != 0)
if np.sum(mask) < filter:
continue
annotation["id"] = i
annotation["segmentation"] = mask
annotation["bbox"] = [
np.min(tmp[0]),
np.min(tmp[1]),
np.max(tmp[1]),
np.max(tmp[0]),
]
annotation["score"] = scores[i]
annotation["area"] = annotation["segmentation"].sum()
annotations.append(annotation)
return annotations
def filter_masks(annotations): # filter the overlap mask
annotations.sort(key=lambda x: x["area"], reverse=True)
to_remove = set()
for i in range(0, len(annotations)):
a = annotations[i]
for j in range(i + 1, len(annotations)):
b = annotations[j]
if i != j and j not in to_remove:
# check if
if b["area"] < a["area"]:
if (a["segmentation"] & b["segmentation"]).sum() / b[
"segmentation"
].sum() > 0.8:
to_remove.add(j)
return [a for i, a in enumerate(annotations) if i not in to_remove], to_remove
def get_bbox_from_mask(mask):
mask = mask.astype(np.uint8)
contours, hierarchy = cv2.findContours(
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
x1, y1, w, h = cv2.boundingRect(contours[0])
x2, y2 = x1 + w, y1 + h
if len(contours) > 1:
for b in contours:
x_t, y_t, w_t, h_t = cv2.boundingRect(b)
# 将多个bbox合并成一个
x1 = min(x1, x_t)
y1 = min(y1, y_t)
x2 = max(x2, x_t + w_t)
y2 = max(y2, y_t + h_t)
h = y2 - y1
w = x2 - x1
return [x1, y1, x2, y2]
def fast_process(
annotations, args, mask_random_color, bbox=None, points=None, edges=False
):
if isinstance(annotations[0], dict):
annotations = [annotation["segmentation"] for annotation in annotations]
result_name = os.path.basename(args.img_path)
image = cv2.imread(args.img_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
original_h = image.shape[0]
original_w = image.shape[1]
if sys.platform == "darwin":
plt.switch_backend("TkAgg")
plt.figure(figsize=(original_w / 100, original_h / 100))
# Add subplot with no margin.
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.margins(0, 0)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.imshow(image)
if args.better_quality == True:
if isinstance(annotations[0], torch.Tensor):
annotations = np.array(annotations.cpu())
for i, mask in enumerate(annotations):
mask = cv2.morphologyEx(
mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)
)
annotations[i] = cv2.morphologyEx(
mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)
)
if args.device == "cpu":
annotations = np.array(annotations)
fast_show_mask(
annotations,
plt.gca(),
random_color=mask_random_color,
bbox=bbox,
points=points,
point_label=args.point_label,
retinamask=args.retina,
target_height=original_h,
target_width=original_w,
)
else:
if isinstance(annotations[0], np.ndarray):
annotations = torch.from_numpy(annotations)
fast_show_mask_gpu(
annotations,
plt.gca(),
random_color=args.randomcolor,
bbox=bbox,
points=points,
point_label=args.point_label,
retinamask=args.retina,
target_height=original_h,
target_width=original_w,
)
if isinstance(annotations, torch.Tensor):
annotations = annotations.cpu().numpy()
if args.withContours == True:
contour_all = []
temp = np.zeros((original_h, original_w, 1))
for i, mask in enumerate(annotations):
if type(mask) == dict:
mask = mask["segmentation"]
annotation = mask.astype(np.uint8)
if args.retina == False:
annotation = cv2.resize(
annotation,
(original_w, original_h),
interpolation=cv2.INTER_NEAREST,
)
contours, hierarchy = cv2.findContours(
annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
for contour in contours:
contour_all.append(contour)
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8])
contour_mask = temp / 255 * color.reshape(1, 1, -1)
plt.imshow(contour_mask)
save_path = args.output
if not os.path.exists(save_path):
os.makedirs(save_path)
plt.axis("off")
fig = plt.gcf()
plt.draw()
try:
buf = fig.canvas.tostring_rgb()
except AttributeError:
fig.canvas.draw()
buf = fig.canvas.tostring_rgb()
cols, rows = fig.canvas.get_width_height()
img_array = np.fromstring(buf, dtype=np.uint8).reshape(rows, cols, 3)
cv2.imwrite(
os.path.join(save_path, result_name), cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
)
# CPU post process
def fast_show_mask(
annotation,
ax,
random_color=False,
bbox=None,
points=None,
point_label=None,
retinamask=True,
target_height=960,
target_width=960,
):
msak_sum = annotation.shape[0]
height = annotation.shape[1]
weight = annotation.shape[2]
# annotation is sorted by area
areas = np.sum(annotation, axis=(1, 2))
sorted_indices = np.argsort(areas)
annotation = annotation[sorted_indices]
index = (annotation != 0).argmax(axis=0)
if random_color == True:
color = np.random.random((msak_sum, 1, 1, 3))
else:
color = np.ones((msak_sum, 1, 1, 3)) * np.array(
[30 / 255, 144 / 255, 255 / 255]
)
transparency = np.ones((msak_sum, 1, 1, 1)) * 0.6
visual = np.concatenate([color, transparency], axis=-1)
mask_image = np.expand_dims(annotation, -1) * visual
show = np.zeros((height, weight, 4))
h_indices, w_indices = np.meshgrid(
np.arange(height), np.arange(weight), indexing="ij"
)
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
# make updates
show[h_indices, w_indices, :] = mask_image[indices]
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(
plt.Rectangle(
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
)
)
# draw point
if points is not None:
plt.scatter(
[point[0] for i, point in enumerate(points) if point_label[i] == 1],
[point[1] for i, point in enumerate(points) if point_label[i] == 1],
s=20,
c="y",
)
plt.scatter(
[point[0] for i, point in enumerate(points) if point_label[i] == 0],
[point[1] for i, point in enumerate(points) if point_label[i] == 0],
s=20,
c="m",
)
if retinamask == False:
show = cv2.resize(
show, (target_width, target_height), interpolation=cv2.INTER_NEAREST
)
ax.imshow(show)
def fast_show_mask_gpu(
annotation,
ax,
random_color=False,
bbox=None,
points=None,
point_label=None,
retinamask=True,
target_height=960,
target_width=960,
):
msak_sum = annotation.shape[0]
height = annotation.shape[1]
weight = annotation.shape[2]
areas = torch.sum(annotation, dim=(1, 2))
sorted_indices = torch.argsort(areas, descending=False)
annotation = annotation[sorted_indices]
# find the first non-zero subscript for each position
index = (annotation != 0).to(torch.long).argmax(dim=0)
if random_color == True:
color = torch.rand((msak_sum, 1, 1, 3)).to(annotation.device)
else:
color = torch.ones((msak_sum, 1, 1, 3)).to(annotation.device) * torch.tensor(
[30 / 255, 144 / 255, 255 / 255]
).to(annotation.device)
transparency = torch.ones((msak_sum, 1, 1, 1)).to(annotation.device) * 0.6
visual = torch.cat([color, transparency], dim=-1)
mask_image = torch.unsqueeze(annotation, -1) * visual
# index
show = torch.zeros((height, weight, 4)).to(annotation.device)
h_indices, w_indices = torch.meshgrid(
torch.arange(height), torch.arange(weight), indexing="ij"
)
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
# make updates based on indices
show[h_indices, w_indices, :] = mask_image[indices]
show_cpu = show.cpu().numpy()
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(
plt.Rectangle(
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
)
)
# draw point
if points is not None:
plt.scatter(
[point[0] for i, point in enumerate(points) if point_label[i] == 1],
[point[1] for i, point in enumerate(points) if point_label[i] == 1],
s=20,
c="y",
)
plt.scatter(
[point[0] for i, point in enumerate(points) if point_label[i] == 0],
[point[1] for i, point in enumerate(points) if point_label[i] == 0],
s=20,
c="m",
)
if retinamask == False:
show_cpu = cv2.resize(
show_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
)
ax.imshow(show_cpu)
def crop_image(annotations, image_like):
if isinstance(image_like, str):
image = Image.open(image_like)
else:
image = image_like
ori_w, ori_h = image.size
mask_h, mask_w = annotations[0]["segmentation"].shape
if ori_w != mask_w or ori_h != mask_h:
image = image.resize((mask_w, mask_h))
cropped_boxes = []
cropped_images = []
not_crop = []
filter_id = []
# annotations, _ = filter_masks(annotations)
# filter_id = list(_)
for _, mask in enumerate(annotations):
if np.sum(mask["segmentation"]) <= 100:
filter_id.append(_)
continue
bbox = get_bbox_from_mask(mask["segmentation"]) # mask 的 bbox
cropped_boxes.append(segment_image(image, bbox))
# cropped_boxes.append(segment_image(image,mask["segmentation"]))
cropped_images.append(bbox)
return cropped_boxes, cropped_images, not_crop, filter_id, annotations
def box_prompt(masks, bbox, target_height, target_width):
h = masks[0]["segmentation"].shape[1]
w = masks[0]["segmentation"].shape[2]
masks = masks[0]["segmentation"]
bbox = bbox.reshape([4])
if h != target_height or w != target_width:
bbox = [
int(bbox[0] * w / target_width),
int(bbox[1] * h / target_height),
int(bbox[2] * w / target_width),
int(bbox[3] * h / target_height),
]
bbox[0] = round(bbox[0]) if round(bbox[0]) > 0 else 0
bbox[1] = round(bbox[1]) if round(bbox[1]) > 0 else 0
bbox[2] = round(bbox[2]) if round(bbox[2]) < w else w
bbox[3] = round(bbox[3]) if round(bbox[3]) < h else h
# IoUs = torch.zeros(len(masks), dtype=torch.float32)
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0])
masks_area = torch.sum(masks[:, bbox[1] : bbox[3], bbox[0] : bbox[2]], dim=(1, 2))
orig_masks_area = torch.sum(masks, dim=(1, 2))
union = bbox_area + orig_masks_area - masks_area
IoUs = masks_area / union
max_iou_index = torch.argmax(IoUs)
return masks[max_iou_index].cpu().numpy(), max_iou_index
def point_prompt(masks, points, point_label, target_height, target_width): # numpy
h = masks[0]["segmentation"].shape[0]
w = masks[0]["segmentation"].shape[1]
if h != target_height or w != target_width:
points = [
[int(point[0] * w / target_width), int(point[1] * h / target_height)]
for point in points
]
onemask = np.zeros((h, w))
for i, annotation in enumerate(masks):
if type(annotation) == dict:
mask = annotation["segmentation"]
else:
mask = annotation
for i, point in enumerate(points):
if point[1] < mask.shape[0] and point[0] < mask.shape[1]:
if mask[point[1], point[0]] == 1 and point_label[i] == 1:
onemask += mask
if mask[point[1], point[0]] == 1 and point_label[i] == 0:
onemask -= mask
onemask = onemask >= 1
return onemask, 0
|