File size: 6,316 Bytes
070c43b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image


def fast_process(
    annotations,
    image,
    device,
    scale,
    better_quality=False,
    mask_random_color=True,
    bbox=None,
    points=None,
    use_retina=True,
    withContours=True,
):
    if isinstance(annotations[0], dict):
        annotations = [annotation["segmentation"] for annotation in annotations]

    original_h = image.height
    original_w = image.width
    if better_quality:
        if isinstance(annotations[0], torch.Tensor):
            annotations = np.array(annotations.cpu())
        for i, mask in enumerate(annotations):
            mask = cv2.morphologyEx(
                mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)
            )
            annotations[i] = cv2.morphologyEx(
                mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)
            )
    if device == "cpu":
        annotations = np.array(annotations)
        inner_mask = fast_show_mask(
            annotations,
            plt.gca(),
            random_color=mask_random_color,
            bbox=bbox,
            retinamask=use_retina,
            target_height=original_h,
            target_width=original_w,
        )
    else:
        if isinstance(annotations[0], np.ndarray):
            annotations = np.array(annotations)
            annotations = torch.from_numpy(annotations)
        inner_mask = fast_show_mask_gpu(
            annotations,
            plt.gca(),
            random_color=mask_random_color,
            bbox=bbox,
            retinamask=use_retina,
            target_height=original_h,
            target_width=original_w,
        )
    if isinstance(annotations, torch.Tensor):
        annotations = annotations.cpu().numpy()

    if withContours:
        contour_all = []
        temp = np.zeros((original_h, original_w, 1))
        for i, mask in enumerate(annotations):
            if type(mask) == dict:
                mask = mask["segmentation"]
            annotation = mask.astype(np.uint8)
            if use_retina == False:
                annotation = cv2.resize(
                    annotation,
                    (original_w, original_h),
                    interpolation=cv2.INTER_NEAREST,
                )
            contours, _ = cv2.findContours(
                annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
            )
            for contour in contours:
                contour_all.append(contour)
        cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
        color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
        contour_mask = temp / 255 * color.reshape(1, 1, -1)

    image = image.convert("RGBA")
    overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), "RGBA")
    image.paste(overlay_inner, (0, 0), overlay_inner)

    if withContours:
        overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), "RGBA")
        image.paste(overlay_contour, (0, 0), overlay_contour)

    return image


# CPU post process
def fast_show_mask(
    annotation,
    ax,
    random_color=False,
    bbox=None,
    retinamask=True,
    target_height=960,
    target_width=960,
):
    mask_sum = annotation.shape[0]
    height = annotation.shape[1]
    weight = annotation.shape[2]
    # annotation is sorted by area
    areas = np.sum(annotation, axis=(1, 2))
    sorted_indices = np.argsort(areas)[::1]
    annotation = annotation[sorted_indices]

    index = (annotation != 0).argmax(axis=0)
    if random_color == True:
        color = np.random.random((mask_sum, 1, 1, 3))
    else:
        color = np.ones((mask_sum, 1, 1, 3)) * np.array(
            [30 / 255, 144 / 255, 255 / 255]
        )
    transparency = np.ones((mask_sum, 1, 1, 1)) * 0.6
    visual = np.concatenate([color, transparency], axis=-1)
    mask_image = np.expand_dims(annotation, -1) * visual

    mask = np.zeros((height, weight, 4))

    h_indices, w_indices = np.meshgrid(
        np.arange(height), np.arange(weight), indexing="ij"
    )
    indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))

    mask[h_indices, w_indices, :] = mask_image[indices]
    if bbox is not None:
        x1, y1, x2, y2 = bbox
        ax.add_patch(
            plt.Rectangle(
                (x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
            )
        )

    if retinamask == False:
        mask = cv2.resize(
            mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST
        )

    return mask


def fast_show_mask_gpu(
    annotation,
    ax,
    random_color=False,
    bbox=None,
    retinamask=True,
    target_height=960,
    target_width=960,
):
    device = annotation.device
    mask_sum = annotation.shape[0]
    height = annotation.shape[1]
    weight = annotation.shape[2]
    areas = torch.sum(annotation, dim=(1, 2))
    sorted_indices = torch.argsort(areas, descending=False)
    annotation = annotation[sorted_indices]
    # find the first non-zero subscript for each position
    index = (annotation != 0).to(torch.long).argmax(dim=0)
    if random_color == True:
        color = torch.rand((mask_sum, 1, 1, 3)).to(device)
    else:
        color = torch.ones((mask_sum, 1, 1, 3)).to(device) * torch.tensor(
            [30 / 255, 144 / 255, 255 / 255]
        ).to(device)
    transparency = torch.ones((mask_sum, 1, 1, 1)).to(device) * 0.6
    visual = torch.cat([color, transparency], dim=-1)
    mask_image = torch.unsqueeze(annotation, -1) * visual
    # index
    mask = torch.zeros((height, weight, 4)).to(device)
    h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
    indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
    # make updates based on indices
    mask[h_indices, w_indices, :] = mask_image[indices]
    mask_cpu = mask.cpu().numpy()
    if bbox is not None:
        x1, y1, x2, y2 = bbox
        ax.add_patch(
            plt.Rectangle(
                (x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
            )
        )
    if retinamask == False:
        mask_cpu = cv2.resize(
            mask_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
        )
    return mask_cpu