Spaces:
Running
on
T4
Running
on
T4
import spaces | |
import gradio as gr | |
import numpy as np | |
import requests | |
import base64 | |
import os | |
from datetime import datetime | |
from pytz import timezone | |
import torch | |
import diffusers | |
from diffusers import DDPMPipeline | |
from transformers import AutoTokenizer, AutoModel | |
tz = timezone('EST') | |
API_ENDPOINT = os.getenv('API_ENDPOINT') | |
API_KEY = os.getenv('API_KEY') | |
print (API_ENDPOINT) | |
print (API_KEY) | |
title = "<h1><center>Markup-to-Image Diffusion Models with Scheduled Sampling</center></h1>" | |
authors = "<center>Yuntian Deng, Noriyuki Kojima, Alexander M. Rush</center>" | |
info = '<center><a href="https://openreview.net/pdf?id=81VJDmOE2ol">Paper</a> <a href="https://github.com/da03/markup2im">Code</a></center>' | |
#notice = "<p><center><strong>Notice:</strong> Due to resource constraints, we've transitioned from GPU to CPU processing for this demo, which results in significantly longer inference times. We appreciate your understanding.</center></p>" | |
notice = "<p><center>Acknowledgment: This demo is powered by GPU resources supported by the Hugging Face Community Grant.</center></p>" | |
# setup | |
def setup(): | |
img_pipe = DDPMPipeline.from_pretrained("yuntian-deng/latex2im_ss_finetunegptneo") | |
model_type = "EleutherAI/gpt-neo-125M" | |
#encoder = AutoModel.from_pretrained(model_type).to(device) | |
encoder = img_pipe.unet.text_encoder | |
if False: | |
l = len(img_pipe.unet.down_blocks) | |
for i in range(l): | |
img_pipe.unet.down_blocks[i] = torch.compile(img_pipe.unet.down_blocks[i]) | |
l = len(img_pipe.unet.up_blocks) | |
for i in range(l): | |
img_pipe.unet.up_blocks[i] = torch.compile(img_pipe.unet.up_blocks[i]) | |
tokenizer = AutoTokenizer.from_pretrained(model_type, max_length=1024) | |
eos_id = tokenizer.encode(tokenizer.eos_token)[0] | |
def forward_encoder(latex): | |
device = ("cuda" if torch.cuda.is_available() else "cpu") | |
img_pipe.to(device) | |
encoded = tokenizer(latex, return_tensors='pt', truncation=True, max_length=1024) | |
input_ids = encoded['input_ids'] | |
input_ids = torch.cat((input_ids, torch.LongTensor([eos_id,]).unsqueeze(0)), dim=-1) | |
input_ids = input_ids.to(device) | |
attention_mask = encoded['attention_mask'] | |
attention_mask = torch.cat((attention_mask, torch.LongTensor([1,]).unsqueeze(0)), dim=-1) | |
attention_mask = attention_mask.to(device) | |
with torch.no_grad(): | |
outputs = encoder(input_ids=input_ids, attention_mask=attention_mask) | |
last_hidden_state = outputs.last_hidden_state | |
last_hidden_state = attention_mask.unsqueeze(-1) * last_hidden_state # shouldn't be necessary | |
return last_hidden_state | |
return img_pipe, forward_encoder | |
img_pipe, forward_encoder = setup() | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
gr.Markdown(authors) | |
gr.Markdown(info) | |
gr.Markdown(notice) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
textbox = gr.Textbox(label=r'Type LaTeX formula below and click "Generate"', lines=1, max_lines=1, placeholder='Type LaTeX formula here and click "Generate"', value=r'\sum_{t=1}^T\E_{y_t \sim {\tilde P(y_t| y_0)}} \left\| \frac{y_t - \sqrt{\bar{\alpha}_t}y_0}{\sqrt{1-\bar{\alpha}_t}} - \epsilon_\theta(y_t, t)\right\|^2.') | |
submit_btn = gr.Button("Generate", elem_id="btn") | |
with gr.Column(scale=3): | |
slider = gr.Slider(0, 1000, value=0, label='step (out of 1000)') | |
image = gr.Image(label="Rendered Image", show_label=False, elem_id="image") | |
inputs = [textbox] | |
outputs = [slider, image, submit_btn] | |
def infer(formula): | |
current_time = datetime.now(tz) | |
print (current_time, formula) | |
data = {'formula': formula, 'api_key': API_KEY} | |
latex = formula # TODO: normalize | |
encoder_hidden_states = forward_encoder(latex) | |
try: | |
i = 0 | |
results = [] | |
for _, image_clean in img_pipe.run_clean(batch_size=1, generator=torch.manual_seed(0), encoder_hidden_states=encoder_hidden_states, output_type="numpy"): | |
i += 1 | |
image_clean = image_clean[0] | |
image_clean = np.ascontiguousarray(image_clean) | |
#s = base64.b64encode(image_clean).decode('ascii') | |
#yield s | |
q = image_clean | |
q = q.reshape((64, 320, 3)) | |
print (q.min(), q.max()) | |
yield i, q, gr.update(visible=False) | |
yield i, q, submit_btn.update(visible=True) | |
#with requests.post(url=API_ENDPOINT, data=data, timeout=600, stream=True) as r: | |
# i = 0 | |
# for line in r.iter_lines(): | |
# response = line.decode('ascii').strip() | |
# r = base64.decodebytes(response.encode('ascii')) | |
# q = np.frombuffer(r, dtype=np.float32).reshape((64, 320, 3)) | |
# i += 1 | |
# yield i, q, gr.update(visible=False) | |
# yield i, q, gr.update(visible=True) | |
except Exception as e: | |
yield 1000, 255*np.ones((64, 320, 3)), gr.update(visible=True) | |
submit_btn.click(fn=infer, inputs=inputs, outputs=outputs, concurrency_limit=1) | |
demo.queue(max_size=20).launch() | |