SDXL-Flash / app.py
Rooni's picture
Update app.py
db6415d verified
import os
import gradio as gr
import numpy as np
from gradio_client import Client
MODEL_ID = os.getenv("MODEL_ID", "KingNish/SDXL-Flash")
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
client = Client(MODEL_ID)
examples = [
"a cat eating a piece of cheese",
"a ROBOT riding a BLUE horse on Mars, photorealistic, 4k",
"Ironman VS Hulk, ultrarealistic",
"Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k",
"An alien holding a sign board containing the word 'Flash', futuristic, neonpunk",
"Kids going to school, Anime style"
]
css = '''
.gradio-container{max-width: 700px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown("""# SDXL Flash""")
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", columns=1, show_label=False)
with gr.Accordion("Advanced options", open=False):
num_images = gr.Slider(
label="Number of Images",
minimum=1,
maximum=4,
step=1,
value=1,
)
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=5,
lines=4,
placeholder="Enter a negative prompt",
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=np.iinfo(np.int32).max,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=6,
step=0.1,
value=3.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=15,
step=1,
value=8,
)
gr.Examples(
examples=examples,
inputs=prompt,
cache_examples=False
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
def generate(
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
randomize_seed,
num_images,
):
results = []
for _ in range(num_images):
response = client.predict(
prompt=prompt,
negative_prompt=negative_prompt if use_negative_prompt else "",
use_negative_prompt=use_negative_prompt,
seed=seed,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
randomize_seed=randomize_seed,
use_resolution_binning=True,
api_name="/run"
)
if isinstance(response, list) and response[0].get("image"):
results.append(response[0]["image"])
else:
results.append("")
return results, seed
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
randomize_seed,
num_images
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()