Spaces:
Sleeping
Sleeping
import streamlit as st | |
import spacy | |
# Load the custom spaCy model | |
nlp = spacy.load("en_pipeline") | |
def extract_skills(text): | |
# Process the text with the loaded spaCy model | |
doc = nlp(text) | |
skills = [] | |
for ent in doc.ents: | |
if ent.label_ == "SKILL": # Ganti dengan label yang sesuai jika berbeda | |
skills.append(ent.text) | |
return skills | |
# Streamlit UI | |
st.title("Ekstraksi Keterampilan dari Deskripsi Pekerjaan") | |
# Input deskripsi pekerjaan | |
job_description = st.text_area("Masukkan Deskripsi Pekerjaan", "") | |
if st.button("Ekstrak Keterampilan"): | |
if job_description: | |
# Ekstrak keterampilan menggunakan model NER | |
skills = extract_skills(job_description) | |
if skills: | |
st.write("Keterampilan yang diekstrak:") | |
for skill in skills: | |
st.write(f"- {skill}") | |
else: | |
st.write("Tidak ada keterampilan yang ditemukan.") | |
else: | |
st.write("Silakan masukkan deskripsi pekerjaan.") |