Spaces:
Build error
Build error
File size: 10,968 Bytes
a123cb5 cdfd0d9 a123cb5 cdfd0d9 a123cb5 cdfd0d9 a123cb5 cdfd0d9 a123cb5 cdfd0d9 a123cb5 cdfd0d9 30c69dc a123cb5 cdfd0d9 a123cb5 cdfd0d9 a123cb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import dataclasses
import os
import hydra
import numpy as np
import torch
from flask import Flask, jsonify, request, render_template
from flask_cors import CORS
from omegaconf import OmegaConf
from safetensors.torch import load_model
from scipy.spatial.transform import Rotation
from point_sam import build_point_sam
import argparse
app = Flask(__name__, static_folder="static")
CORS(app)
MAX_POINT_ID = 100
point_info_id = 0
point_info_list = [None for _ in range(MAX_POINT_ID)]
@dataclasses.dataclass
class AuxInputs:
coords: torch.Tensor
features: torch.Tensor
centers: torch.Tensor
interp_index: torch.Tensor = None
interp_weight: torch.Tensor = None
def repeat_interleave(x: torch.Tensor, repeats: int, dim: int):
if repeats == 1:
return x
shape = list(x.shape)
shape.insert(dim + 1, 1)
shape[dim + 1] = repeats
x = x.unsqueeze(dim + 1).expand(shape).flatten(dim, dim + 1)
return x
class PointCloudProcessor:
def __init__(self, device="cuda", batch=True, return_tensors="pt"):
self.device = device
self.batch = batch
self.return_tensors = return_tensors
self.center = None
self.scale = None
def __call__(self, xyz: np.ndarray, rgb: np.ndarray):
# # The original data is z-up. Make it y-up.
# rot = Rotation.from_euler("x", -90, degrees=True)
# xyz = rot.apply(xyz)
if self.center is None or self.scale is None:
self.center = xyz.mean(0)
self.scale = np.max(np.linalg.norm(xyz - self.center, axis=-1))
xyz = (xyz - self.center) / self.scale
rgb = ((rgb / 255.0) - 0.5) * 2
if self.return_tensors == "np":
coords = np.float32(xyz)
feats = np.float32(rgb)
if self.batch:
coords = np.expand_dims(coords, 0)
feats = np.expand_dims(feats, 0)
elif self.return_tensors == "pt":
coords = torch.tensor(xyz, dtype=torch.float32, device=self.device)
feats = torch.tensor(rgb, dtype=torch.float32, device=self.device)
if self.batch:
coords = coords.unsqueeze(0)
feats = feats.unsqueeze(0)
else:
raise ValueError(self.return_tensors)
return coords, feats
def normalize(self, xyz):
return (xyz - self.center) / self.scale
class PointCloudSAMPredictor:
input_xyz: np.ndarray
input_rgb: np.ndarray
prompt_coords: list[tuple[float, float, float]]
prompt_labels: list[int]
coords: torch.Tensor
feats: torch.Tensor
pc_embedding: torch.Tensor
patches: dict[str, torch.Tensor]
prompt_mask: torch.Tensor
def __init__(self):
print("Created model")
model = build_point_sam("./model-2.safetensors")
model.pc_encoder.patch_embed.grouper.num_groups = 1024
model.pc_encoder.patch_embed.grouper.group_size = 128
if torch.cuda.is_available():
model = model.cuda()
model.eval()
self.model = model
self.input_rgb = None
self.input_xyz = None
self.input_processor = None
self.coords = None
self.feats = None
self.pc_embedding = None
self.patches = None
self.prompt_coords = None
self.prompt_labels = None
self.prompt_mask = None
self.candidate_index = 0
@torch.no_grad()
def set_pointcloud(self, xyz, rgb):
self.input_xyz = xyz
self.input_rgb = rgb
self.input_processor = PointCloudProcessor()
coords, feats = self.input_processor(xyz, rgb)
self.coords = coords
self.feats = feats
pc_embedding, patches = self.model.pc_encoder(self.coords, self.feats)
self.pc_embedding = pc_embedding
self.patches = patches
self.prompt_mask = None
def set_prompts(self, prompt_coords, prompt_labels):
self.prompt_coords = prompt_coords
self.prompt_labels = prompt_labels
@torch.no_grad()
def predict_mask(self):
normalized_prompt_coords = self.input_processor.normalize(
np.array(self.prompt_coords)
)
prompt_coords = torch.tensor(
normalized_prompt_coords, dtype=torch.float32, device="cuda"
)
prompt_labels = torch.tensor(
self.prompt_labels, dtype=torch.bool, device="cuda"
)
prompt_coords = prompt_coords.reshape(1, -1, 3)
prompt_labels = prompt_labels.reshape(1, -1)
multimask_output = prompt_coords.shape[1] == 1
# [B * M, num_outputs, num_points], [B * M, num_outputs]
def decode_masks(coords, feats, pc_embedding, patches, prompt_coords, prompt_labels, prompt_masks, multimask_output):
pc_embeddings, patches = pc_embedding, patches
centers = patches["centers"]
knn_idx = patches["knn_idx"]
coords = patches["coords"]
feats = patches["feats"]
aux_inputs = AuxInputs(coords=coords, features=feats, centers=centers)
pc_pe = self.model.point_encoder.pe_layer(centers)
sparse_embeddings = self.model.point_encoder(prompt_coords, prompt_labels)
dense_embeddings = self.model.mask_encoder(prompt_masks, coords, centers, knn_idx)
dense_embeddings = repeat_interleave(
dense_embeddings, sparse_embeddings.shape[0] // dense_embeddings.shape[0], 0
)
logits, iou_preds = self.model.mask_decoder(
pc_embeddings,
pc_pe,
sparse_embeddings,
dense_embeddings,
aux_inputs=aux_inputs,
multimask_output=multimask_output,
)
return logits, iou_preds
logits, scores = decode_masks(
self.coords,
self.feats,
self.pc_embedding,
self.patches,
prompt_coords,
prompt_labels,
self.prompt_mask[self.candidate_index].unsqueeze(0) if self.prompt_mask is not None else None,
multimask_output,
)
logits = logits.squeeze(0)
scores = scores.squeeze(0)
# if multimask_output:
# index = scores.argmax(0).item()
# logit = logits[index]
# else:
# logit = logits.squeeze(0)
# self.prompt_mask = logit.unsqueeze(0)
# pred_mask = logit > 0
# return pred_mask.cpu().numpy()
# Sort according to scores
_, indices = scores.sort(descending=True)
logits = logits[indices]
self.prompt_mask = logits # [num_outputs, num_points]
self.candidate_index = 0
return (logits > 0).cpu().numpy()
def set_candidate(self, index):
self.candidate_index = index
predictor = PointCloudSAMPredictor()
@app.route("/")
def index():
return app.send_static_file("index.html")
@app.route("/assets/<path:path>")
def assets_route(path):
print(path)
return app.send_static_file(f"assets/{path}")
@app.route("/hello_world", methods=["GET"])
def hello_world():
return "Hello, World!"
@app.route("/set_pointcloud", methods=["POST"])
def set_pointcloud():
request_data = request.get_json()
# print(request_data)
# print(type(request_data["points"]))
# print(type(request_data["colors"]))
xyz = request_data["points"]
xyz = np.array(xyz).reshape(-1, 3)
rgb = request_data["colors"]
rgb = np.array(list(rgb)).reshape(-1, 3)
predictor.set_pointcloud(xyz, rgb)
pc_embedding = predictor.pc_embedding.cpu()
patches = {"centers": predictor.patches["centers"].cpu(), "knn_idx": predictor.patches["knn_idx"].cpu(), "coords": predictor.coords.cpu(), "feats": predictor.feats.cpu()}
center = predictor.input_processor.center
scale = predictor.input_processor.scale
global point_info_id
global point_info_list
point_info_list[point_info_id] = {"pc_embedding": pc_embedding, "patches": patches, "center": center, "scale": scale, "prompt_mask": None}
return_msg = {"user_id": point_info_id}
point_info_id += 1
return jsonify(return_msg)
@app.route("/set_candidate", methods=["POST"])
def set_candidate():
request_data = request.get_json()
candidate_index = request_data["index"]
predictor.set_candidate(candidate_index)
return "success"
def visualize_pcd_with_prompts(xyz, rgb, prompt_coords, prompt_labels):
import trimesh
pcd = trimesh.PointCloud(xyz, rgb)
prompt_spheres = []
for i, coord in enumerate(prompt_coords):
sphere = trimesh.creation.icosphere()
sphere.apply_scale(0.02)
sphere.apply_translation(coord)
sphere.visual.vertex_colors = [255, 0, 0] if prompt_labels[i] else [0, 255, 0]
prompt_spheres.append(sphere)
return trimesh.Scene([pcd] + prompt_spheres)
@app.route("/set_prompts", methods=["POST"])
def set_prompts():
global point_info_list
request_data = request.get_json()
print(request_data.keys())
# [n_prompts, 3]
prompt_coords = request_data["prompt_coords"]
# [n_prompts]. 0 for negative, 1 for positive
prompt_labels = request_data["prompt_labels"]
user_id = request_data["user_id"]
print(user_id)
point_info = point_info_list[user_id]
predictor.pc_embedding = point_info["pc_embedding"].cuda()
patches = point_info["patches"]
predictor.patches = {"centers": patches["centers"].cuda(), "knn_idx": patches["knn_idx"].cuda(), "coords": patches["coords"].cuda(), "feats": patches["feats"].cuda()}
predictor.input_processor.center = point_info["center"]
predictor.input_processor.scale = point_info["scale"]
if point_info["prompt_mask"] is not None:
predictor.prompt_mask = point_info["prompt_mask"].cuda()
else:
predictor.prompt_mask = None
# instance_id = request_data["instance_id"] # int
if len(prompt_coords) == 0:
predictor.prompt_mask = None
pred_mask = np.zeros([len(prompt_coords)], dtype=np.bool_)
return jsonify({"mask": pred_mask.tolist()})
predictor.set_prompts(prompt_coords, prompt_labels)
pred_mask = predictor.predict_mask()
point_info_list[user_id]["prompt_mask"] = predictor.prompt_mask.cpu()
# # Visualize
# xyz = predictor.coords.cpu().numpy()[0]
# rgb = predictor.feats.cpu().numpy()[0] * 0.5 + 0.5
# prompt_coords = predictor.input_processor.normalize(np.array(predictor.prompt_coords))
# scene = visualize_pcd_with_prompts(xyz, rgb, prompt_coords, predictor.prompt_labels)
# scene.show()
return jsonify({"mask": pred_mask.tolist()})
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default=7860)
args = parser.parse_args()
app.run(host=args.host, port=args.port, debug=True)
|