yucelgumus61's picture
Create app.py
bee17ae verified
raw
history blame
1 kB
import gradio as gr
import torch
from torchvision import transforms
from model import ExampleModel
model_path = "model/animal_7.pth"
labels = ["bird", "cat", "dog", "horse"]
num_classes = len(labels)
device = torch.device("cuda:0" if torch.cuda.is_available() else "mps")
# Preprocess
preprocess = transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor()])
# Load Model
model = ExampleModel(num_classes=num_classes).to(device)
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()
# Prediction function
def predict(image):
img_tensor = preprocess(image).unsqueeze(0).to(device)
with torch.no_grad():
prediction = model(img_tensor)
prediction = torch.nn.functional.softmax(prediction, dim=1).squeeze()
confidences = {labels[i]: float(prediction[i]) for i in range(num_classes)}
return confidences
gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=num_classes),
).launch()