Spaces:
Sleeping
Sleeping
File size: 1,000 Bytes
bee17ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
import torch
from torchvision import transforms
from model import ExampleModel
model_path = "model/animal_7.pth"
labels = ["bird", "cat", "dog", "horse"]
num_classes = len(labels)
device = torch.device("cuda:0" if torch.cuda.is_available() else "mps")
# Preprocess
preprocess = transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor()])
# Load Model
model = ExampleModel(num_classes=num_classes).to(device)
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()
# Prediction function
def predict(image):
img_tensor = preprocess(image).unsqueeze(0).to(device)
with torch.no_grad():
prediction = model(img_tensor)
prediction = torch.nn.functional.softmax(prediction, dim=1).squeeze()
confidences = {labels[i]: float(prediction[i]) for i in range(num_classes)}
return confidences
gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=num_classes),
).launch()
|