Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -84,28 +84,28 @@ usage_to_weights_file = {
|
|
84 |
'General-legacy': 'BiRefNet-legacy'
|
85 |
}
|
86 |
|
87 |
-
birefnet = AutoModelForImageSegmentation.from_pretrained('/'.join(
|
88 |
birefnet.to(device)
|
89 |
birefnet.eval()
|
90 |
|
91 |
|
92 |
@spaces.GPU
|
93 |
-
def predict(images
|
94 |
assert (images is not None), 'AssertionError: images cannot be None.'
|
95 |
|
96 |
global birefnet
|
97 |
# Load BiRefNet with chosen weights
|
98 |
-
_weights_file = '/'.join(
|
99 |
print('Using weights: {}.'.format(_weights_file))
|
100 |
birefnet = AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True)
|
101 |
birefnet.to(device)
|
102 |
birefnet.eval()
|
103 |
|
104 |
-
try:
|
105 |
-
|
106 |
-
except:
|
107 |
-
|
108 |
-
|
109 |
|
110 |
if isinstance(images, list):
|
111 |
# For tab_batch
|
@@ -131,7 +131,7 @@ def predict(images, resolution, weights_file):
|
|
131 |
|
132 |
image = image_ori.convert('RGB')
|
133 |
# Preprocess the image
|
134 |
-
image_preprocessor = ImagePreprocessor(resolution=tuple(resolution))
|
135 |
image_proc = image_preprocessor.proc(image)
|
136 |
image_proc = image_proc.unsqueeze(0)
|
137 |
|
@@ -184,44 +184,19 @@ tab_image = gr.Interface(
|
|
184 |
fn=predict,
|
185 |
inputs=[
|
186 |
gr.Image(label='Upload an image'),
|
187 |
-
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"),
|
188 |
-
gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.")
|
189 |
],
|
190 |
outputs=ImageSlider(label="BiRefNet's prediction", type="pil"),
|
191 |
-
examples=examples,
|
192 |
api_name="image",
|
193 |
description=descriptions,
|
194 |
)
|
195 |
|
196 |
-
tab_text = gr.Interface(
|
197 |
-
fn=predict,
|
198 |
-
inputs=[
|
199 |
-
gr.Textbox(label="Paste an image URL"),
|
200 |
-
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"),
|
201 |
-
gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.")
|
202 |
-
],
|
203 |
-
outputs=ImageSlider(label="BiRefNet's prediction", type="pil"),
|
204 |
-
examples=examples_url,
|
205 |
-
api_name="text",
|
206 |
-
description=descriptions+'\nTab-URL is partially modified from https://huggingface.co/spaces/not-lain/background-removal, thanks to this great work!',
|
207 |
-
)
|
208 |
-
|
209 |
-
tab_batch = gr.Interface(
|
210 |
-
fn=predict,
|
211 |
-
inputs=[
|
212 |
-
gr.File(label="Upload multiple images", type="filepath", file_count="multiple"),
|
213 |
-
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"),
|
214 |
-
gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.")
|
215 |
-
],
|
216 |
-
outputs=[gr.Gallery(label="BiRefNet's predictions"), gr.File(label="Download masked images.")],
|
217 |
-
api_name="batch",
|
218 |
-
description=descriptions+'\nTab-batch is partially modified from https://huggingface.co/spaces/NegiTurkey/Multi_Birefnetfor_Background_Removal, thanks to this great work!',
|
219 |
-
)
|
220 |
-
|
221 |
demo = gr.TabbedInterface(
|
222 |
-
[tab_image
|
223 |
-
['image'
|
224 |
-
title="BiRefNet demo for subject extraction
|
225 |
)
|
226 |
|
227 |
if __name__ == "__main__":
|
|
|
84 |
'General-legacy': 'BiRefNet-legacy'
|
85 |
}
|
86 |
|
87 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained('/'.join('zhengpeng7', 'BiRefNet_lite'), trust_remote_code=True)
|
88 |
birefnet.to(device)
|
89 |
birefnet.eval()
|
90 |
|
91 |
|
92 |
@spaces.GPU
|
93 |
+
def predict(images):
|
94 |
assert (images is not None), 'AssertionError: images cannot be None.'
|
95 |
|
96 |
global birefnet
|
97 |
# Load BiRefNet with chosen weights
|
98 |
+
_weights_file = '/'.join('zhengpeng7', 'BiRefNet_lite')
|
99 |
print('Using weights: {}.'.format(_weights_file))
|
100 |
birefnet = AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True)
|
101 |
birefnet.to(device)
|
102 |
birefnet.eval()
|
103 |
|
104 |
+
#try:
|
105 |
+
# resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')]
|
106 |
+
#except:
|
107 |
+
# resolution = (1024, 1024) if weights_file not in ['General-Lite-2K'] else (2560, 1440)
|
108 |
+
# print('Invalid resolution input. Automatically changed to 1024x1024 or 2K.')
|
109 |
|
110 |
if isinstance(images, list):
|
111 |
# For tab_batch
|
|
|
131 |
|
132 |
image = image_ori.convert('RGB')
|
133 |
# Preprocess the image
|
134 |
+
image_preprocessor = ImagePreprocessor() #(resolution=tuple(resolution))
|
135 |
image_proc = image_preprocessor.proc(image)
|
136 |
image_proc = image_proc.unsqueeze(0)
|
137 |
|
|
|
184 |
fn=predict,
|
185 |
inputs=[
|
186 |
gr.Image(label='Upload an image'),
|
187 |
+
#gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"),
|
188 |
+
#gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.")
|
189 |
],
|
190 |
outputs=ImageSlider(label="BiRefNet's prediction", type="pil"),
|
191 |
+
#examples=examples,
|
192 |
api_name="image",
|
193 |
description=descriptions,
|
194 |
)
|
195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
demo = gr.TabbedInterface(
|
197 |
+
[tab_image],
|
198 |
+
['image'],
|
199 |
+
title="BiRefNet demo for subject extraction.",
|
200 |
)
|
201 |
|
202 |
if __name__ == "__main__":
|