Spaces:
Sleeping
Sleeping
import os | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
MAX_MAX_NEW_TOKENS = 8192 | |
DEFAULT_MAX_NEW_TOKENS = 2048 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
DESCRIPTION = """\ | |
# Turkish LLaMA 8B Chat | |
This Space demonstrates [Turkish-Llama-8b-DPO-v0.1](https://huggingface.co/ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1) by YTU COSMOS Research Group, an 8B parameter model fine-tuned for Turkish language understanding and generation. Feel free to play with it, or duplicate to run generations without a queue! | |
🔎 This model is the newest and most advanced iteration of CosmosLLama, developed by merging two distinctly trained CosmosLLaMa-Instruct DPO models. | |
🤖 The model is optimized for Turkish language tasks and can handle various text generation scenarios including conversations, instructions, and general text completion. | |
💡 You can also try the model on the official demo page: [cosmos.yildiz.edu.tr/cosmosllama](https://cosmos.yildiz.edu.tr/cosmosllama) | |
""" | |
LICENSE = """ | |
<p/> | |
--- | |
This demo uses [Turkish-Llama-8b-DPO-v0.1](https://huggingface.co/ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1) by YTU COSMOS Research Group, | |
and is governed by the original llama3 license. | |
""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
if torch.cuda.is_available(): | |
model_id = "ytu-ce-cosmos/Turkish-Llama-8b-DPO-v0.1" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.use_default_system_prompt = False | |
TERMINATORS = [ | |
tokenizer.eos_token_id, | |
tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
] | |
def generate( | |
message: str, | |
chat_history: list[dict], | |
system_prompt: str = "", | |
max_new_tokens: int = 2048, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.0, | |
) -> Iterator[str]: | |
conversation = [] | |
if system_prompt: | |
conversation.append({"role": "system", "content": system_prompt}) | |
conversation += chat_history | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template( | |
conversation, | |
add_generation_prompt=True, | |
return_tensors="pt" | |
) | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
eos_token_id=TERMINATORS, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Textbox( | |
label="System prompt", | |
lines=6, | |
value="Sen bir yapay zeka asistanısın. Kullanıcı sana bir görev verecek. Amacın görevi olabildiğince sadık bir şekilde tamamlamak. Görevi yerine getirirken adım adım düşün ve adımlarını gerekçelendir.", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=4.0, | |
step=0.1, | |
value=0.6, | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.9, | |
), | |
gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=50, | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.0, | |
), | |
], | |
stop_btn=None, | |
examples=[ | |
["Merhaba! Nasılsın?"], | |
["Yapay zeka alanında açık kaynak kodun faydaları nelerdir?"], | |
], | |
cache_examples=False, | |
type="messages", | |
) | |
with gr.Blocks(css_paths="style.css", fill_height=True) as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
chat_interface.render() | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |