Spaces:
Runtime error
Runtime error
File size: 25,700 Bytes
95f97c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
"""
Copyright (c) 2023, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import logging
import os
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.cuda.amp import autocast as autocast
from torch.nn import functional as F
# from lavis.common.registry import registry
# from lavis.models.base_model import all_gather_with_grad, concat_all_gather
from lavis.models.blip2_models.blip2 import (
disabled_train,
)
from lavis.models.blip_models.blip_outputs import BlipOutput
from lavis.common.dist_utils import is_dist_avail_and_initialized
from model.blip2 import Blip2Base
from pytorch_lightning.utilities import distributed
@torch.no_grad()
def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
# if use distributed training
if not is_dist_avail_and_initialized():
return tensor
tensors_gather = [
torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size())
]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
print('running here')
return output
@torch.no_grad()
def pl_concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
# if use distributed training
if not is_dist_avail_and_initialized():
return tensor
tensors_gather = distributed.gather_all_tensors(tensor)
output = torch.cat(tensors_gather, dim=0)
return output
# @registry.register_model("blip2")
# @registry.register_model("blip2_feature_extractor")
class Blip2Qformer(Blip2Base):
"""
BLIP2 first-stage model with Q-former and ViT.
Supported model types:
- pretrained: pretrained model with vit-g
- pretrain_vitL: pretrained model with vit-large
- coco: fintuned model on coco
Usage:
>>> from lavis.models import load_model
>>> model = load_model("blip2", "pretrain")
"""
def __init__(
self,
gtm,
lm,
bert_name,
temperature,
gin_num_layers,
gin_hidden_dim,
gin_drop_ratio,
tune_gnn=False,
num_query_token=32,
cross_attention_freq=2,
embed_dim=256,
):
super().__init__()
self.gtm = gtm
self.lm = lm
self.tokenizer = self.init_tokenizer()
self.graph_encoder, self.ln_graph = self.init_graph_encoder(gin_num_layers, gin_hidden_dim, gin_drop_ratio)
self.tune_gnn = tune_gnn
if not tune_gnn:
for name, param in self.graph_encoder.named_parameters():
param.requires_grad = False
self.graph_encoder = self.graph_encoder.eval()
self.graph_encoder.train = disabled_train
logging.info("freeze graph encoder")
self.Qformer, self.query_tokens = self.init_Qformer(bert_name, num_query_token, self.graph_encoder.num_features, cross_attention_freq)
self.Qformer.resize_token_embeddings(len(self.tokenizer))
state_dict = self.Qformer.state_dict()
for name, param in self.Qformer.named_parameters():
if "_query" in name:
key_orig = name.replace("_query", "")
param.data.copy_(state_dict[key_orig])
self.graph_proj = nn.Linear(self.Qformer.config.hidden_size, embed_dim)
self.text_proj = nn.Linear(self.Qformer.config.hidden_size, embed_dim)
self.gtm_head = nn.Linear(self.Qformer.config.hidden_size, 2)
self.temperature = temperature
def contrast(self, features_graph, features_text, return_sim=False):
'''
features_graph: shape = [B, num_qs, D]
features_text: shape = [B, D]
'''
batch_size = features_graph.size(0)
# normalized features
features_graph = F.normalize(features_graph, dim=-1)
features_text = F.normalize(features_text, dim=-1)
# cosine similarity as logits
sim_q2t = (features_graph.unsqueeze(1) @ features_text.unsqueeze(-1)).squeeze() # shape = [B, 1, num_qs, D]; shape = [B, D, 1]; output shape = [B, B, num_qs]
sim_g2t, _ = sim_q2t.max(-1) # shape = [B, B]
logits_per_graph = sim_g2t / self.temperature
logits_per_text = logits_per_graph.t()
labels = torch.arange(batch_size, dtype=torch.long, device=self.device) # 大小为B
loss_graph = F.cross_entropy(logits_per_graph, labels)
loss_text = F.cross_entropy(logits_per_text, labels)
loss = (loss_graph + loss_text) / 2
if return_sim:
return logits_per_graph, logits_per_text, loss
else:
return loss
def contrast_global(self, features_graph, features_text, features_graph_all, features_text_all, return_sim=False):
'''
features_graph: shape = [B, num_qs, D]
features_text: shape = [B, D]
features_text_all: shape = [B * num_gpus, D]
features_graph_all: shape = [B * num_gpus, num_qs, D]
'''
bs = features_graph.size(0)
# cosine similarity as logits
sim_q2t = (features_graph.unsqueeze(1) @ features_text_all.unsqueeze(-1)).squeeze() # shape = [B, 1, num_qs, D]; shape = [B * num_gpus, D, 1]; output shape = [B, B * num_gpus, num_qs]
sim_g2t, _ = sim_q2t.max(-1) # shape = [B, B * num_gpus]
logits_per_graph = sim_g2t / self.temperature
sim_t2q = (features_text.unsqueeze(1).unsqueeze(1) @ features_graph_all.permute(0, 2, 1)).squeeze() # shape = [B, 1, 1, D]; [B*num_gpus, D, num_qs]; output shape = [B, B*num_gpus, 1, num_qs]
sim_t2g, _ = sim_t2q.max(-1)
logits_per_text = sim_t2g / self.temperature
# labels = torch.arange(bs, dtype=torch.long, device=self.device)
rank = dist.get_rank()
labels = torch.linspace(rank * bs, rank * bs + bs - 1, bs, dtype=int).to(self.device)
loss_graph = F.cross_entropy(logits_per_graph, labels)
loss_text = F.cross_entropy(logits_per_text, labels)
loss = (loss_graph + loss_text) / 2
if return_sim:
return logits_per_graph[:, rank*bs:rank*bs+bs], logits_per_text[:, rank*bs:rank*bs+bs], loss
else:
return loss
def forward_old(self, batch):
## v1: not gather results from all gpus
###============== Image-text Contrastive ===================###
graph, text, mask = batch
batch_node, batch_mask = self.graph_encoder(graph)
batch_node = batch_node.detach()
batch_size = batch_node.shape[0]
batch_node = self.ln_graph(batch_node, batch_mask)
query_tokens = self.query_tokens.expand(batch_node.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=batch_node,
encoder_attention_mask=batch_mask, # fixme: check whether this mask is correct
use_cache=True,
return_dict=True,
)
graph_feats = self.graph_proj(query_output.last_hidden_state) # shape = [B, num_q, D]
text_output = self.Qformer.bert(text, attention_mask=mask, return_dict=True) # shape = [B, n_max, D]
text_feats = self.text_proj(text_output.last_hidden_state[:, 0, :])
sim_g2t, sim_t2g, loss_gtc = self.contrast(graph_feats, text_feats, return_sim=True)
###============== Image-text Matching ===================###
loss_gtm = 0
if self.gtm:
g_emb = batch_node
g_mask = batch_mask
text_ids = text.clone()
with torch.no_grad():
weights_t2g = F.softmax(sim_t2g, dim=1) + 1e-4
weights_t2g.fill_diagonal_(0)
weights_g2t = F.softmax(sim_g2t, dim=1) + 1e-4
weights_g2t.fill_diagonal_(0)
# select a negative graph for each text
graph_embeds_neg = []
graph_mask_neg = []
for b in range(batch_size):
neg_idx = torch.multinomial(weights_t2g[b], 1).item()
graph_embeds_neg.append(g_emb[neg_idx])
graph_mask_neg.append(g_mask[neg_idx])
graph_embeds_neg = torch.stack(graph_embeds_neg, dim=0)
graph_mask_neg = torch.stack(graph_mask_neg, dim=0)
# select a negative text for each image
text_ids_neg = []
text_atts_neg = []
for b in range(batch_size):
neg_idx = torch.multinomial(weights_g2t[b], 1).item()
text_ids_neg.append(text_ids[neg_idx])
text_atts_neg.append(mask[neg_idx])
text_ids_neg = torch.stack(text_ids_neg, dim=0)
text_atts_neg = torch.stack(text_atts_neg, dim=0)
text_ids_all = torch.cat(
[text_ids, text_ids, text_ids_neg], dim=0
) # pos, pos, neg
text_atts_all = torch.cat(
[mask, mask, text_atts_neg],
dim=0,
)
query_tokens_itm = self.query_tokens.expand(text_ids_all.shape[0], -1, -1)
query_atts_itm = torch.ones(query_tokens_itm.size()[:-1], dtype=torch.long, device=text.device)
attention_mask_all = torch.cat([query_atts_itm, text_atts_all], dim=1)
graph_embeds_all = torch.cat([g_emb, graph_embeds_neg, g_emb], dim=0) # pos, neg, pos
graph_atts_all = torch.cat([g_mask, graph_mask_neg, g_mask], dim=0)
output_itm = self.Qformer.bert(
text_ids_all,
query_embeds=query_tokens_itm,
attention_mask=attention_mask_all,
encoder_hidden_states=graph_embeds_all,
encoder_attention_mask=graph_atts_all,
return_dict=True,
)
vl_embeddings = output_itm.last_hidden_state[:, : query_tokens_itm.size(1), :] # keep query tokens only
vl_output = self.gtm_head(vl_embeddings)
logits = vl_output.mean(dim=1)
itm_labels = torch.cat(
[torch.ones(batch_size, dtype=torch.long), torch.zeros(2 * batch_size, dtype=torch.long)],
dim=0,
).to(text.device)
loss_gtm = F.cross_entropy(logits, itm_labels)
##================= Image Captioning ========================##
loss_lm = 0
if self.lm:
decoder_input_ids = text.clone()
decoder_input_ids[:, 0] = self.tokenizer.bos_token_id
labels = decoder_input_ids.masked_fill(
decoder_input_ids == self.tokenizer.pad_token_id, -100
)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long, device=text.device)
attention_mask = torch.cat([query_atts, mask], dim=1)
lm_output = self.Qformer(
decoder_input_ids,
attention_mask=attention_mask,
past_key_values=query_output.past_key_values,
return_dict=True,
labels=labels,
)
loss_lm = lm_output.loss
return BlipOutput(
loss=loss_gtc + loss_gtm + loss_lm,
loss_itc=loss_gtc,
loss_itm=loss_gtm,
loss_lm=loss_lm,
)
def forward(self, batch):
## v2: gather results from all gpus
###============== Image-text Contrastive ===================###
graph, text, mask = batch
batch_node, batch_mask = self.graph_encoder(graph)
if not self.tune_gnn:
batch_node = batch_node.detach()
batch_size = batch_node.shape[0]
batch_node = self.ln_graph(batch_node, batch_mask)
query_tokens = self.query_tokens.expand(batch_node.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=batch_node,
encoder_attention_mask=batch_mask, # fixme: check whether this mask is correct
use_cache=True,
return_dict=True,
)
graph_feats = self.graph_proj(query_output.last_hidden_state) # shape = [B, num_q, D]
text_output = self.Qformer.bert(text, attention_mask=mask, return_dict=True) # shape = [B, n_max, D]
text_feats = self.text_proj(text_output.last_hidden_state[:, 0, :])
text_feats, graph_feats = F.normalize(text_feats, p=2, dim=-1), F.normalize(graph_feats, p=2, dim=-1)
text_feats_all, graph_feats_all = pl_concat_all_gather(text_feats), pl_concat_all_gather(graph_feats) # shape = [B * num_gpus, D]
sim_g2t, sim_t2g, loss_gtc = self.contrast_global(graph_feats, text_feats, graph_feats_all, text_feats_all, return_sim=True)
###============== Image-text Matching ===================###
loss_gtm = 0
if self.gtm:
## not aggregate global tensor because of their different shapes
g_emb_world = batch_node
g_mask_world = batch_mask
text_ids_world = text
text_mask_world = mask
with torch.no_grad():
weights_t2g = F.softmax(sim_t2g, dim=1) + 1e-4
weights_t2g.fill_diagonal_(0)
weights_g2t = F.softmax(sim_g2t, dim=1) + 1e-4
weights_g2t.fill_diagonal_(0)
# select a negative graph for each text
graph_embeds_neg = []
graph_mask_neg = []
for b in range(batch_size):
neg_idx = torch.multinomial(weights_t2g[b], 1).item()
graph_embeds_neg.append(g_emb_world[neg_idx])
graph_mask_neg.append(g_mask_world[neg_idx])
graph_embeds_neg = torch.stack(graph_embeds_neg, dim=0)
graph_mask_neg = torch.stack(graph_mask_neg, dim=0)
# select a negative text for each image
text_ids_neg = []
text_atts_neg = []
for b in range(batch_size):
neg_idx = torch.multinomial(weights_g2t[b], 1).item()
text_ids_neg.append(text_ids_world[neg_idx])
text_atts_neg.append(text_mask_world[neg_idx])
text_ids_neg = torch.stack(text_ids_neg, dim=0)
text_atts_neg = torch.stack(text_atts_neg, dim=0)
text_ids_all = torch.cat(
[text, text, text_ids_neg], dim=0
) # pos, pos, neg
text_atts_all = torch.cat(
[mask, mask, text_atts_neg],
dim=0,
)
query_tokens_itm = self.query_tokens.expand(text_ids_all.shape[0], -1, -1)
query_atts_itm = torch.ones(query_tokens_itm.size()[:-1], dtype=torch.long, device=text.device)
attention_mask_all = torch.cat([query_atts_itm, text_atts_all], dim=1)
graph_embeds_all = torch.cat([batch_node, graph_embeds_neg, batch_node], dim=0) # pos, neg, pos
graph_atts_all = torch.cat([batch_mask, graph_mask_neg, batch_mask], dim=0)
output_itm = self.Qformer.bert(
text_ids_all,
query_embeds=query_tokens_itm,
attention_mask=attention_mask_all,
encoder_hidden_states=graph_embeds_all,
encoder_attention_mask=graph_atts_all,
return_dict=True,
)
vl_embeddings = output_itm.last_hidden_state[:, : query_tokens_itm.size(1), :] # keep query tokens only
vl_output = self.gtm_head(vl_embeddings)
logits = vl_output.mean(dim=1)
itm_labels = torch.cat(
[torch.ones(batch_size, dtype=torch.long), torch.zeros(2 * batch_size, dtype=torch.long)],
dim=0,
).to(text.device)
loss_gtm = F.cross_entropy(logits, itm_labels)
##================= Image Captioning ========================##
loss_lm = 0
if self.lm:
decoder_input_ids = text.clone()
decoder_input_ids[:, 0] = self.tokenizer.bos_token_id
labels = decoder_input_ids.masked_fill(
decoder_input_ids == self.tokenizer.pad_token_id, -100
)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long, device=text.device)
attention_mask = torch.cat([query_atts, mask], dim=1)
lm_output = self.Qformer(
decoder_input_ids,
attention_mask=attention_mask,
past_key_values=query_output.past_key_values,
return_dict=True,
labels=labels,
)
loss_lm = lm_output.loss
return BlipOutput(
loss=loss_gtc + loss_gtm + loss_lm,
loss_itc=loss_gtc,
loss_itm=loss_gtm,
loss_lm=loss_lm,
)
def forward_v3(self, batch):
## v3: use smiles instruction
###============== Image-text Contrastive ===================###
graphs, text_tokens, prompt_tokens = batch
graph_embeds, graph_masks = self.graph_encoder(graphs)
if not self.tune_gnn:
graph_embeds = graph_embeds.detach()
graph_embeds = self.ln_graph(graph_embeds, graph_masks)
device = text_tokens.input_ids.device
batch_size = graph_embeds.shape[0]
##
query_tokens = self.query_tokens.expand(graph_embeds.shape[0], -1, -1)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long, device=device)
attention_mask_gtc = torch.cat([query_atts, prompt_tokens.attention_mask], dim=1)
query_output = self.Qformer.bert(
input_ids=prompt_tokens,
query_embeds=query_tokens,
attention_mask=attention_mask_gtc,
encoder_hidden_states=graph_embeds,
encoder_attention_mask=graph_masks, # fixme: check whether this mask is correct
use_cache=True,
return_dict=True,
)
query_output = query_output.last_hidden_state[:, : query_tokens.size(1), :] # keep query tokens only
graph_feats = self.graph_proj(query_output) # shape = [B, num_q, D]
text_output = self.Qformer.bert(text_tokens.input_ids, attention_mask=text_tokens.attention_mask, return_dict=True) # shape = [B, n_max, D]
text_feats = self.text_proj(text_output.last_hidden_state[:, 0, :])
text_feats, graph_feats = F.normalize(text_feats, p=2, dim=-1), F.normalize(graph_feats, p=2, dim=-1)
text_feats_all, graph_feats_all = pl_concat_all_gather(text_feats), pl_concat_all_gather(graph_feats) # shape = [B * num_gpus, D]
sim_g2t, sim_t2g, loss_gtc = self.contrast_global(graph_feats, text_feats, graph_feats_all, text_feats_all, return_sim=True)
###============== Image-text Matching ===================###
loss_gtm = 0
if self.gtm:
## not aggregate global tensor because of their different shapes
g_emb_world = graph_embeds
g_mask_world = graph_masks
text_ids_world = text_tokens.input_ids
text_mask_world = text_tokens.attention_mask
with torch.no_grad():
weights_t2g = F.softmax(sim_t2g, dim=1) + 1e-4
weights_t2g.fill_diagonal_(0)
weights_g2t = F.softmax(sim_g2t, dim=1) + 1e-4
weights_g2t.fill_diagonal_(0)
# select a negative graph for each text
graph_embeds_neg = []
graph_mask_neg = []
for b in range(batch_size):
neg_idx = torch.multinomial(weights_t2g[b], 1).item()
graph_embeds_neg.append(g_emb_world[neg_idx])
graph_mask_neg.append(g_mask_world[neg_idx])
graph_embeds_neg = torch.stack(graph_embeds_neg, dim=0)
graph_mask_neg = torch.stack(graph_mask_neg, dim=0)
# select a negative text for each image
text_ids_neg = []
text_atts_neg = []
for b in range(batch_size):
neg_idx = torch.multinomial(weights_g2t[b], 1).item()
text_ids_neg.append(text_ids_world[neg_idx])
text_atts_neg.append(text_mask_world[neg_idx])
text_ids_neg = torch.stack(text_ids_neg, dim=0)
text_atts_neg = torch.stack(text_atts_neg, dim=0)
text_ids_all = torch.cat(
[text_tokens.input_ids, text_tokens.input_ids, text_ids_neg], dim=0
) # pos, pos, neg
text_atts_all = torch.cat(
[text_tokens.attention_mask, text_tokens.attention_mask, text_atts_neg],
dim=0,
)
query_tokens_itm = self.query_tokens.expand(text_ids_all.shape[0], -1, -1)
query_atts_itm = torch.ones(query_tokens_itm.size()[:-1], dtype=torch.long, device=text_tokens.input_ids.device)
attention_mask_all = torch.cat([query_atts_itm, text_atts_all], dim=1)
graph_embeds_all = torch.cat([graph_embeds, graph_embeds_neg, graph_embeds], dim=0) # pos, neg, pos
graph_atts_all = torch.cat([graph_masks, graph_mask_neg, graph_masks], dim=0)
output_itm = self.Qformer.bert(
text_ids_all,
query_embeds=query_tokens_itm,
attention_mask=attention_mask_all,
encoder_hidden_states=graph_embeds_all,
encoder_attention_mask=graph_atts_all,
return_dict=True,
)
vl_embeddings = output_itm.last_hidden_state[:, : query_tokens_itm.size(1), :] # keep query tokens only
vl_output = self.gtm_head(vl_embeddings)
logits = vl_output.mean(dim=1)
itm_labels = torch.cat(
[torch.ones(batch_size, dtype=torch.long), torch.zeros(2 * batch_size, dtype=torch.long)],
dim=0,
).to(text_tokens.input_ids.device)
loss_gtm = F.cross_entropy(logits, itm_labels)
##================= Image Captioning ========================##
loss_lm = 0
if self.lm:
decoder_input_ids = text_tokens.input_ids.clone()
decoder_input_ids[:, 0] = self.tokenizer.bos_token_id
labels = decoder_input_ids.masked_fill(
decoder_input_ids == self.tokenizer.pad_token_id, -100
)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long, device=text_tokens.input_ids.device)
attention_mask = torch.cat([query_atts, prompt_tokens.attention_mask, text_tokens.attention_mask], dim=1)
lm_output = self.Qformer(
decoder_input_ids,
attention_mask=attention_mask,
past_key_values=query_output.past_key_values,
return_dict=True,
labels=labels,
)
loss_lm = lm_output.loss
return BlipOutput(
loss=loss_gtc + loss_gtm + loss_lm,
loss_itc=loss_gtc,
loss_itm=loss_gtm,
loss_lm=loss_lm,
)
def graph_forward(self, graph):
batch_node, batch_mask = self.graph_encoder(graph)
batch_node = self.ln_graph(batch_node, batch_mask)
query_tokens = self.query_tokens.expand(batch_node.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=batch_node,
encoder_attention_mask=batch_mask, # fixme: check whether this mask is correct
use_cache=False,
return_dict=True,
)
graph_feats = self.graph_proj(query_output.last_hidden_state) # shape = [B, num_q, D]
graph_feats = F.normalize(graph_feats, p=2, dim=-1)
return graph_feats, batch_node, batch_mask
def text_forward(self, text, mask):
text_output = self.Qformer.bert(text, attention_mask=mask, return_dict=True) # shape = [B, n_max, D]
text_feats = self.text_proj(text_output.last_hidden_state[:, 0, :] )
text_feats = F.normalize(text_feats, dim=-1, p=2)
return text_feats
def compute_gtm(self, batch_node, batch_mask, text_ids, text_atts):
'''
batch_node shape = [B, N, D]
batch_mask shape = [B, N]
text_ids shape = [B, N]
text_atts shape = [B, N]
'''
query_tokens = self.query_tokens.expand(batch_node.shape[0], -1, -1) # shape = [B, Nq, D]
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(
batch_node.device
) # shape = [B, Nq]
attention_mask = torch.cat([query_atts, text_atts], dim=1) # shape = [B, Nq + N]
output_gtm = self.Qformer.bert(
text_ids,
query_embeds=query_tokens,
attention_mask=attention_mask,
encoder_hidden_states=batch_node,
encoder_attention_mask=batch_mask,
return_dict=True,
)
gl_embeddings = output_gtm.last_hidden_state[:, : query_tokens.size(1), :] # shape = [B, Nq, D]
gtm_logit = self.gtm_head(gl_embeddings).mean(dim=1) # shape = [B, Nq, 2]
# gtm_logit = F.softmax(gtm_logit, dim=-1)[:, 1] # select the axis of the positive class
gtm_logit = gtm_logit[:, 1] # select the axis of the positive class
return gtm_logit
|