File size: 9,044 Bytes
67741f2
bae4131
3119795
e3a07b7
3119795
67741f2
 
7ccf9d4
67741f2
 
d1ed69b
7ccf9d4
bae4131
 
 
 
 
570d85c
089a447
bae4131
67741f2
 
6454c0e
e3a07b7
 
d50990e
e3a07b7
d50990e
 
 
e3a07b7
 
d50990e
d1ed69b
6454c0e
3119795
 
 
 
 
 
e3a07b7
089a447
 
 
 
 
e3a07b7
d50990e
7ccf9d4
e3a07b7
7ccf9d4
 
 
 
 
089a447
 
 
 
 
 
 
 
 
 
 
bae4131
570d85c
 
25580aa
 
 
 
 
 
 
 
 
 
089a447
67741f2
bae4131
 
 
67741f2
bae4131
 
089a447
3d76e98
23510fc
3d76e98
4a9b060
3d76e98
 
 
 
 
 
7ccf9d4
3d76e98
7ccf9d4
23510fc
089a447
d50990e
 
 
 
7ccf9d4
 
bae4131
67741f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bae4131
d50990e
e3a07b7
089a447
d50990e
 
 
67741f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d50990e
 
 
 
 
25580aa
d50990e
 
 
 
 
 
 
67741f2
 
 
 
 
 
d50990e
 
 
 
 
67741f2
d50990e
 
 
 
 
 
 
 
 
 
67741f2
 
 
 
 
 
 
 
d50990e
67741f2
 
 
 
 
 
 
 
 
 
 
d50990e
 
 
 
 
 
 
 
570d85c
 
 
 
 
 
 
 
 
 
 
 
 
67741f2
570d85c
 
67741f2
 
 
 
 
 
 
 
 
 
 
d1ed69b
089a447
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import asyncio
import os
import sys
import time
import gradio as gr

from datasets import load_dataset
from huggingface_hub import whoami
from loguru import logger
from pathlib import Path

from yourbench_space.config import generate_and_save_config
from yourbench_space.utils import (
    CONFIG_PATH,
    UPLOAD_DIRECTORY,
    SubprocessManager,
    save_files,
    update_dataset,
    STAGES,
)
from yourbench_space.evaluation import create_eval_file, run_evaluations
from yourbench_space.leaderboard_space.env import HF_TOKEN

project_description = """
# YourBench 🚀  
**Dynamic Benchmark Generation for Language Models**

Quickly create zero-shot benchmarks from your documents – keeping models accurate and adaptable
- 📖 [FAQ](#) 
- 💻 [GitHub](https://github.com/huggingface/yourbench/tree/v0.2-alpha-space)
"""


UPLOAD_DIRECTORY.mkdir(parents=True, exist_ok=True)

logger.remove()
logger.add(sys.stderr, level="INFO")

command = ["uv", "run", "yourbench", f"--config={CONFIG_PATH}"]
manager = SubprocessManager(command)

docs_path = Path(__file__).parent / "docs.md"
citation_content = (
    docs_path.read_text().split("# Citation")[-1].strip()
    if docs_path.exists()
    else "# Citation\n\nDocumentation file not found."
)


def generate_and_return(hf_org, hf_prefix):
    generate_and_save_config(hf_org, hf_prefix)
    for _ in range(5):
        if CONFIG_PATH.exists():
            break
        time.sleep(0.5)

    return (
        (
            "✅ Config saved!",
            gr.update(value=str(CONFIG_PATH), visible=True, interactive=True),
        )
        if CONFIG_PATH.exists()
        else (
            "❌ Config generation failed.",
            gr.update(visible=False, interactive=False),
        )
    )

final_dataset = None

def update_process_status():
    """Update process status and include exit details if process has terminated"""
    is_running = manager.is_running()
    
    if not is_running:
        exit_code, exit_reason = manager.get_exit_details()
        status_text = f"Process Status: Stopped - {exit_reason}, exit code - {exit_code}" if exit_reason else "Process Status: Stopped"
        return gr.update(value=False, label=status_text)
    
    return gr.update(value=True, label="Process Status: Running")

def prepare_task(oauth_token: gr.OAuthToken | None, hf_dataset_name: str, _=None):
    new_env = os.environ.copy()
    if oauth_token:
        new_env["HF_TOKEN"] = oauth_token.token
    new_env["DATASET_PREFIX"] = hf_dataset_name
    manager.start_process(custom_env=new_env)


def update_hf_org_dropdown(oauth_token: gr.OAuthToken | None):
    if oauth_token is None:
        return gr.Dropdown([], label="Organization")

    try:
        user_info = whoami(oauth_token.token)
        org_names = [org["name"] for org in user_info.get("orgs", [])]
        user_name = user_info.get("name", "Unknown User")
        org_names.insert(0, user_name)
        return gr.Dropdown(org_names, value=user_name, label="Organization")

    except Exception as e:
        return gr.Dropdown([], label="Organization")


def switch_to_run_generation_tab():
    return gr.Tabs(selected=1)


def enable_button(files):
    return gr.update(interactive=bool(files))

def run_evaluation_pipeline(oauth_token: gr.OAuthToken | None, org_name, eval_name):
    # Test dataset existence
    eval_ds_name = f"{org_name}/{eval_name}"
    # Test dataset existence
    try:
        load_dataset(eval_ds_name, streaming=True)
    except Exception as e:
        print(f"Error while loading the dataset: {e}")
        return
    # Run evaluations
    create_eval_file(eval_ds_name)
    status = asyncio.run(run_evaluations(eval_ds_name=eval_ds_name, org=org_name))
    # Create space
    from huggingface_hub import HfApi
    repo_id = f"{org_name}/leaderboard_yourbench_{eval_ds_name.replace('/', '_')}"
    api = HfApi()

    try:
        api.create_repo(repo_id=repo_id, repo_type="space", space_sdk="gradio")
        api.upload_folder(repo_id=repo_id, repo_type="space", folder_path="src/")
        api.add_space_secret(repo_id=repo_id, key="HF_TOKEN", value=HF_TOKEN)
        api.add_space_variable(repo_id=repo_id, key="TASK", value=eval_ds_name)
        api.add_space_variable(repo_id=repo_id, key="ORG_NAME", value=org_name)
    except Exception as e:
        status = "Evaluation" + status + "\nLeaderboard creation:" + e
    return status


with gr.Blocks(theme=gr.themes.Default()) as app:
    gr.Markdown(project_description)

    with gr.Tabs() as tabs:
        with gr.Tab("Setup", id=0):
            with gr.Row():
                with gr.Column():
                    login_btn = gr.LoginButton()
                    with gr.Accordion("Hugging Face Settings"):
                        hf_org_dropdown = gr.Dropdown(
                            choices=[], label="Organization", allow_custom_value=True
                        )
                        app.load(
                            update_hf_org_dropdown, inputs=None, outputs=hf_org_dropdown
                        )

                        hf_dataset_name = gr.Textbox(
                            label="Dataset name",
                            value="yourbench",
                            info="Name of your new evaluation dataset",
                        )

                with gr.Accordion("Upload documents"):
                    file_input = gr.File(
                        label="Upload text files",
                        file_count="multiple",
                        file_types=[".txt", ".md", ".html", ".pdf"],
                    )
                    output = gr.Textbox(label="Log")
                    file_input.upload(
                        lambda files: save_files([file.name for file in files]),
                        file_input,
                        output,
                    )
            with gr.Row():
                preview_button = gr.Button("Generate New Config", interactive=False)
                log_message = gr.Textbox(label="Log Message", visible=True)
                download_button = gr.File(
                    label="Download Config", visible=False, interactive=False
                )

            file_input.change(enable_button, inputs=file_input, outputs=preview_button)

            preview_button.click(
                generate_and_return,
                inputs=[hf_org_dropdown, hf_dataset_name],
                outputs=[log_message, download_button],
            )
            preview_button.click(
                switch_to_run_generation_tab,
                inputs=None,
                outputs=tabs,
            )

        with gr.Tab("Run Generation", id=1):
            with gr.Row():
                start_button = gr.Button("Start Task")
                start_button.click(prepare_task, inputs=[login_btn, hf_dataset_name])

                stop_button = gr.Button("Stop Task")
                stop_button.click(manager.stop_process)

                kill_button = gr.Button("Kill Task")
                kill_button.click(manager.kill_process)

            with gr.Column():
                with gr.Row():
                    with gr.Accordion("Log Output", open=True):
                        log_output = gr.Code(language=None, lines=20, interactive=False)

                with gr.Row():
                    process_status = gr.Checkbox(label="Process Status", interactive=False)
                    status_timer = gr.Timer(1.0, active=True)
                    status_timer.tick(update_process_status, outputs=process_status)

            with gr.Column():
                with gr.Accordion("Stages", open=True):
                    stages_table = gr.CheckboxGroup(
                        choices=STAGES,
                        value=[],
                        label="Pipeline Stages Completed",
                        interactive=False,
                    )

                with gr.Accordion("Ingestion"):
                    ingestion_df = gr.DataFrame()
                    
                with gr.Accordion("Summarization"):
                    summarization_df = gr.DataFrame()
                    
                with gr.Accordion("Single-Hop"):
                    single_hop = gr.DataFrame()

                with gr.Accordion("Answer Generation"):
                    answers_df = gr.DataFrame()
            
                stages_table.change(
                    update_dataset, inputs=[stages_table, hf_org_dropdown, hf_dataset_name], outputs=[ingestion_df, summarization_df, single_hop, answers_df]
                )

            log_timer = gr.Timer(1.0, active=True)
            log_timer.tick(
                manager.read_and_get_output, outputs=[log_output, stages_table]
            )
        with gr.Tab("Evaluate", id=2):
            with gr.Row():
                btn_launch_evals = gr.Button("Launch evaluations")
                status = gr.Textbox(label="Status")

            btn_launch_evals.click(run_evaluation_pipeline, [hf_org_dropdown, hf_dataset_name], status)


app.launch(allowed_paths=["/app"])