Spaces:
Runtime error
Runtime error
import os | |
import facexlib | |
import gfpgan | |
import modules.face_restoration | |
from modules import paths, shared, devices, modelloader, errors | |
model_dir = "GFPGAN" | |
user_path = None | |
model_path = os.path.join(paths.models_path, model_dir) | |
model_file_path = None | |
model_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth" | |
have_gfpgan = False | |
loaded_gfpgan_model = None | |
def gfpgann(): | |
global loaded_gfpgan_model | |
global model_path | |
global model_file_path | |
if loaded_gfpgan_model is not None: | |
loaded_gfpgan_model.gfpgan.to(devices.device_gfpgan) | |
return loaded_gfpgan_model | |
if gfpgan_constructor is None: | |
return None | |
models = modelloader.load_models(model_path, model_url, user_path, ext_filter=['.pth']) | |
if len(models) == 1 and models[0].startswith("http"): | |
model_file = models[0] | |
elif len(models) != 0: | |
gfp_models = [] | |
for item in models: | |
if 'GFPGAN' in os.path.basename(item): | |
gfp_models.append(item) | |
latest_file = max(gfp_models, key=os.path.getctime) | |
model_file = latest_file | |
else: | |
print("Unable to load gfpgan model!") | |
return None | |
if hasattr(facexlib.detection.retinaface, 'device'): | |
facexlib.detection.retinaface.device = devices.device_gfpgan | |
model_file_path = model_file | |
model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=devices.device_gfpgan) | |
loaded_gfpgan_model = model | |
return model | |
def send_model_to(model, device): | |
model.gfpgan.to(device) | |
model.face_helper.face_det.to(device) | |
model.face_helper.face_parse.to(device) | |
def gfpgan_fix_faces(np_image): | |
model = gfpgann() | |
if model is None: | |
return np_image | |
send_model_to(model, devices.device_gfpgan) | |
np_image_bgr = np_image[:, :, ::-1] | |
cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True) | |
np_image = gfpgan_output_bgr[:, :, ::-1] | |
model.face_helper.clean_all() | |
if shared.opts.face_restoration_unload: | |
send_model_to(model, devices.cpu) | |
return np_image | |
gfpgan_constructor = None | |
def setup_model(dirname): | |
try: | |
os.makedirs(model_path, exist_ok=True) | |
from gfpgan import GFPGANer | |
from facexlib import detection, parsing # noqa: F401 | |
global user_path | |
global have_gfpgan | |
global gfpgan_constructor | |
global model_file_path | |
facexlib_path = model_path | |
if dirname is not None: | |
facexlib_path = dirname | |
load_file_from_url_orig = gfpgan.utils.load_file_from_url | |
facex_load_file_from_url_orig = facexlib.detection.load_file_from_url | |
facex_load_file_from_url_orig2 = facexlib.parsing.load_file_from_url | |
def my_load_file_from_url(**kwargs): | |
return load_file_from_url_orig(**dict(kwargs, model_dir=model_file_path)) | |
def facex_load_file_from_url(**kwargs): | |
return facex_load_file_from_url_orig(**dict(kwargs, save_dir=facexlib_path, model_dir=None)) | |
def facex_load_file_from_url2(**kwargs): | |
return facex_load_file_from_url_orig2(**dict(kwargs, save_dir=facexlib_path, model_dir=None)) | |
gfpgan.utils.load_file_from_url = my_load_file_from_url | |
facexlib.detection.load_file_from_url = facex_load_file_from_url | |
facexlib.parsing.load_file_from_url = facex_load_file_from_url2 | |
user_path = dirname | |
have_gfpgan = True | |
gfpgan_constructor = GFPGANer | |
class FaceRestorerGFPGAN(modules.face_restoration.FaceRestoration): | |
def name(self): | |
return "GFPGAN" | |
def restore(self, np_image): | |
return gfpgan_fix_faces(np_image) | |
shared.face_restorers.append(FaceRestorerGFPGAN()) | |
except Exception: | |
errors.report("Error setting up GFPGAN", exc_info=True) | |