|
""" |
|
The Streamlit app for the project demo. |
|
In the demo, the user can write a prompt |
|
and the model will generate a response using the grouped sampling algorithm. |
|
""" |
|
|
|
import streamlit as st |
|
|
|
from hanlde_form_submit import on_form_submit |
|
from on_server_start import main as on_server_start_main |
|
|
|
|
|
on_server_start_main() |
|
|
|
AVAILABLE_MODEL_NAMES = "https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads" |
|
|
|
|
|
with st.form("request_form"): |
|
selected_model_name: str = st.text_input( |
|
label="Model name", |
|
value="gpt2", |
|
help=f"The name of the model to use." |
|
f" Must be a model from this list:" |
|
f" {AVAILABLE_MODEL_NAMES}" |
|
) |
|
|
|
output_length: int = st.number_input( |
|
label="Output Length in tokens", |
|
min_value=1, |
|
max_value=4096, |
|
value=100, |
|
help="The length of the output text in tokens (word pieces)." |
|
) |
|
|
|
submitted_prompt: str = st.text_area( |
|
label="Input for the model", |
|
help="Enter the prompt for the model. The model will generate a response based on this prompt.", |
|
max_chars=16384, |
|
) |
|
|
|
submitted: bool = st.form_submit_button( |
|
label="Generate", |
|
help="Generate the output text.", |
|
disabled=False |
|
|
|
) |
|
|
|
if submitted: |
|
output = on_form_submit(selected_model_name, output_length, submitted_prompt) |
|
st.write(f"Generated text: {output}") |
|
|