File size: 1,480 Bytes
b1dd47e
15bf463
b1dd47e
 
 
15bf463
b1dd47e
 
15bf463
 
b1dd47e
15bf463
b1dd47e
15bf463
 
 
b1dd47e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from typing import Generator

import requests
from bs4 import BeautifulSoup
from concurrent.futures import ThreadPoolExecutor, as_completed

SUPPORTED_MODEL_NAME_PAGES_FORMAT = "https://huggingface.co/models?pipeline_tag=text-generation&library=pytorch"
MAX_WORKERS = 10


def get_model_name(model_card: BeautifulSoup) -> str:
    h4_class = "text-md truncate font-mono text-black dark:group-hover:text-yellow-500 group-hover:text-indigo-600"
    h4_tag = model_card.find("h4", class_=h4_class)
    return h4_tag.text


def get_page(page_index: int):
    curr_page_url = f"{SUPPORTED_MODEL_NAME_PAGES_FORMAT}&p={page_index}"
    response = requests.get(curr_page_url)
    if response.status_code == 200:
        soup = BeautifulSoup(response.content, "html.parser")
        return soup
    return None


def get_model_names(soup):
    model_cards = soup.find_all("article", class_="overview-card-wrapper group", recursive=True)
    return [get_model_name(model_card) for model_card in model_cards]


def generate_supported_model_names() -> Generator[str, None, None]:
    with ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
        future_to_index = {executor.submit(get_page, index): index for index in range(100)}
        for future in as_completed(future_to_index):
            soup = future.result()
            if soup:
                yield from get_model_names(soup)


def get_supported_model_names() -> set[str]:
    return set(generate_supported_model_names())