yonigozlan HF staff commited on
Commit
54e5741
•
1 Parent(s): 09aafbd

add app.py

Browse files
Files changed (7) hide show
  1. .gitattributes +3 -0
  2. README.md +3 -1
  3. app.py +180 -0
  4. cat.mp4 +3 -0
  5. football.mp4 +3 -0
  6. requirement.txt +5 -0
  7. safari2.mp4 +3 -0
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ football.mp4 filter=lfs diff=lfs merge=lfs -text
37
+ cat.mp4 filter=lfs diff=lfs merge=lfs -text
38
+ safari2.mp4 filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  title: Omdet Turbo Open Vocabulary
3
- emoji: 💻
4
  colorFrom: red
5
  colorTo: blue
6
  sdk: gradio
@@ -8,6 +8,8 @@ sdk_version: 4.42.0
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
 
 
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
  title: Omdet Turbo Open Vocabulary
3
+ emoji: 📹
4
  colorFrom: red
5
  colorTo: blue
6
  sdk: gradio
 
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
+ short_description: Video captioning/open-vocabulary/zero-shot
12
+
13
  ---
14
 
15
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+
4
+ import cv2
5
+ import gradio as gr
6
+ import numpy as np
7
+ import spaces
8
+ import supervision as sv
9
+ import torch
10
+ from PIL import Image
11
+ from tqdm import tqdm
12
+
13
+ from transformers import AutoModelForZeroShotObjectDetection, AutoProcessor
14
+
15
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
16
+
17
+ processor = AutoProcessor.from_pretrained("omdet-turbo-tiny-timm")
18
+ model = AutoModelForZeroShotObjectDetection.from_pretrained("omdet-turbo-tiny-timm").to(
19
+ device
20
+ )
21
+
22
+ css = """
23
+ #warning {background-color: #FFCCCB}
24
+ .feedback textarea {font-size: 24px !important}
25
+ """
26
+
27
+ BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
28
+ MASK_ANNOTATOR = sv.MaskAnnotator()
29
+ LABEL_ANNOTATOR = sv.LabelAnnotator()
30
+
31
+
32
+ def calculate_end_frame_index(source_video_path):
33
+ video_info = sv.VideoInfo.from_video_path(source_video_path)
34
+ return min(video_info.total_frames, video_info.fps * 2)
35
+
36
+
37
+ def annotate_image(input_image, detections, labels) -> np.ndarray:
38
+ output_image = MASK_ANNOTATOR.annotate(input_image, detections)
39
+ output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
40
+ output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
41
+ return output_image
42
+
43
+
44
+ def resize_to_max_side(frame: np.ndarray, max_side: int = 640):
45
+ h, w = frame.shape[:2]
46
+ if h > w:
47
+ new_h, new_w = max_side, int(w * max_side / h)
48
+ else:
49
+ new_h, new_w = int(h * max_side / w), max_side
50
+
51
+ return cv2.resize(frame, (new_w, new_h))
52
+
53
+
54
+ @spaces.GPU
55
+ def process_video(
56
+ input_video,
57
+ confidence_threshold,
58
+ classes,
59
+ max_side,
60
+ progress=gr.Progress(track_tqdm=True),
61
+ ):
62
+ classes = classes.strip(" ").split(",")
63
+ video_info = sv.VideoInfo.from_video_path(input_video)
64
+ total = calculate_end_frame_index(input_video)
65
+ frame_generator = sv.get_video_frames_generator(source_path=input_video, end=total)
66
+
67
+ result_file_name = "output.mp4"
68
+ result_file_path = os.path.join(os.getcwd(), result_file_name)
69
+ all_fps = []
70
+ with sv.VideoSink(result_file_path, video_info=video_info) as sink:
71
+ for _ in tqdm(range(total), desc="Processing video.."):
72
+ frame = next(frame_generator)
73
+ results, fps = query(
74
+ frame, classes, confidence_threshold, max_side=max_side
75
+ )
76
+ all_fps.append(fps)
77
+ detections = []
78
+
79
+ detections = sv.Detections(
80
+ xyxy=results[0]["boxes"].cpu().detach().numpy(),
81
+ confidence=results[0]["scores"].cpu().detach().numpy(),
82
+ class_id=np.array(
83
+ [
84
+ classes.index(results_class)
85
+ for results_class in results[0]["classes"]
86
+ ]
87
+ ),
88
+ data={"class_name": results[0]["classes"]},
89
+ )
90
+ frame = annotate_image(
91
+ input_image=frame,
92
+ detections=detections,
93
+ labels=results[0]["classes"],
94
+ )
95
+ sink.write_frame(frame)
96
+
97
+ avg_fps = np.mean(all_fps)
98
+ return result_file_path, gr.Markdown(
99
+ f'<h3 style="text-align: center;">Model inference FPS: {avg_fps:.2f}</h3>',
100
+ visible=True,
101
+ )
102
+
103
+
104
+ def query(frame, classes, confidence_threshold, max_side=360):
105
+ frame_resized = resize_to_max_side(frame, max_side=max_side)
106
+ image = Image.fromarray(cv2.cvtColor(frame_resized, cv2.COLOR_BGR2RGB))
107
+ inputs = processor(images=image, text=classes, return_tensors="pt").to(device)
108
+ with torch.no_grad():
109
+ start = time.time()
110
+ outputs = model(**inputs)
111
+ fps = 1 / (time.time() - start)
112
+ target_sizes = [frame.shape[:2]]
113
+
114
+ results = processor.post_process_grounded_object_detection(
115
+ outputs=outputs,
116
+ classes=classes,
117
+ score_threshold=confidence_threshold,
118
+ target_sizes=target_sizes,
119
+ )
120
+ return results, fps
121
+
122
+
123
+ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
124
+ gr.Markdown("## Real Time Open Vocabulary Object Detection with Omdet-Turbo")
125
+ gr.Markdown(
126
+ "This is a demo for open vocabulary object detection using OmDet-Turbo. \\"
127
+ "It runs on ZeroGPU which captures GPU every first time you infer. This combined with video processing time means that the demo inference time is slower than the model's actual inference time. \\"
128
+ "The actual model inference FPS is displayed under the processed video after inference."
129
+ )
130
+ gr.Markdown(
131
+ "Simply upload a video, and write the objects you want to detect! You can also play with confidence threshold, image size, or try the examples below. 👇"
132
+ )
133
+
134
+ with gr.Row():
135
+ with gr.Column():
136
+ input_video = gr.Video(label="Input Video")
137
+ submit = gr.Button()
138
+ with gr.Column():
139
+ output_video = gr.Video(label="Output Video")
140
+ actual_fps = gr.Markdown("", visible=False)
141
+ with gr.Row():
142
+ classes = gr.Textbox(
143
+ "person, cat, dog",
144
+ label="Objects to detect. Change this as you like!",
145
+ elem_classes="feedback",
146
+ scale=3,
147
+ )
148
+ conf = gr.Slider(
149
+ label="Confidence Threshold",
150
+ minimum=0.1,
151
+ maximum=1.0,
152
+ value=0.2,
153
+ step=0.05,
154
+ )
155
+ max_side = gr.Slider(
156
+ label="Image Size",
157
+ minimum=240,
158
+ maximum=1080,
159
+ value=640,
160
+ step=10,
161
+ )
162
+ example = gr.Examples(
163
+ fn=process_video,
164
+ examples=[
165
+ ["./football.mp4", 0.3, "person, ball, shoe", 640],
166
+ ["./cat.mp4", 0.2, "cat", 640],
167
+ ["./safari2.mp4", 0.3, "elephant, giraffe, springbok, zebra", 640],
168
+ ],
169
+ inputs=[input_video, conf, classes, max_side],
170
+ outputs=output_video,
171
+ )
172
+
173
+ submit.click(
174
+ fn=process_video,
175
+ inputs=[input_video, conf, classes, max_side],
176
+ outputs=[output_video, actual_fps],
177
+ )
178
+
179
+ if __name__ == "__main__":
180
+ demo.launch(show_error=True)
cat.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07539c031a516acecf58b8751f74ba90182efe4c4ad25513038f10564739eadd
3
+ size 810095
football.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56a85c5c7d5d6e0825f76a71e5e3ee2ce35c8ffbe841ef4bfa544af1089259aa
3
+ size 2855852
requirement.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ torch
2
+ timm
3
+ git+https://github.com/yonigozlan/transformers.git@add-om-det-turbo
4
+ supervision
5
+ spaces
safari2.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c7f26f775768d06219b19acb4c071e40928f1042b7b4fa2d876095c72139e19
3
+ size 3011687