Spaces:
Sleeping
Sleeping
Commit
Β·
52a6b6f
1
Parent(s):
4b4739f
initial commit (v1.2)
Browse files- README.md +2 -2
- app.py +141 -0
- packages.txt +1 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: ColPali Transformers
|
3 |
-
emoji:
|
4 |
colorFrom: yellow
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.9.1
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: ColPali Transformers
|
3 |
+
emoji: π
|
4 |
colorFrom: yellow
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.9.1
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import spaces
|
5 |
+
import torch
|
6 |
+
from pdf2image import convert_from_path
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
from transformers import ColPaliForRetrieval, ColPaliProcessor
|
11 |
+
|
12 |
+
|
13 |
+
@spaces.GPU
|
14 |
+
def install_fa2():
|
15 |
+
print("Install FA2")
|
16 |
+
os.system("pip install flash-attn --no-build-isolation")
|
17 |
+
|
18 |
+
|
19 |
+
# install_fa2()
|
20 |
+
|
21 |
+
model_name = "vidore/colpali-v1.2-hf"
|
22 |
+
|
23 |
+
|
24 |
+
model = ColPaliForRetrieval.from_pretrained(
|
25 |
+
model_name,
|
26 |
+
torch_dtype=torch.bfloat16,
|
27 |
+
device_map="cuda:0", # or "mps" if on Apple Silicon
|
28 |
+
# attn_implementation="flash_attention_2", # should work on A100
|
29 |
+
).eval()
|
30 |
+
processor = ColPaliProcessor.from_pretrained(model_name)
|
31 |
+
|
32 |
+
|
33 |
+
@spaces.GPU
|
34 |
+
def search(query: str, ds, images, k):
|
35 |
+
k = min(k, len(ds))
|
36 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
37 |
+
if device != model.device:
|
38 |
+
model.to(device)
|
39 |
+
|
40 |
+
qs = []
|
41 |
+
with torch.no_grad():
|
42 |
+
batch_query = processor(text=[query]).to(model.device)
|
43 |
+
query_embeddings = model(**batch_query).embeddings
|
44 |
+
qs.extend(list(torch.unbind(query_embeddings.to("cpu"))))
|
45 |
+
|
46 |
+
scores = processor.score_retrieval(qs, ds)
|
47 |
+
|
48 |
+
top_k_indices = scores[0].topk(k).indices.tolist()
|
49 |
+
|
50 |
+
results = []
|
51 |
+
for idx in top_k_indices:
|
52 |
+
results.append((images[idx], f"Page {idx}"))
|
53 |
+
|
54 |
+
return results
|
55 |
+
|
56 |
+
|
57 |
+
def index(files, ds):
|
58 |
+
print("Converting files")
|
59 |
+
images = convert_files(files)
|
60 |
+
print(f"Files converted with {len(images)} images.")
|
61 |
+
return index_gpu(images, ds)
|
62 |
+
|
63 |
+
|
64 |
+
def convert_files(files):
|
65 |
+
images = []
|
66 |
+
for f in files:
|
67 |
+
images.extend(convert_from_path(f, thread_count=4))
|
68 |
+
|
69 |
+
if len(images) >= 150:
|
70 |
+
raise gr.Error("The number of images in the dataset should be less than 150.")
|
71 |
+
return images
|
72 |
+
|
73 |
+
|
74 |
+
@spaces.GPU
|
75 |
+
def index_gpu(images, ds):
|
76 |
+
"""Example script to run inference with ColPali"""
|
77 |
+
|
78 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
79 |
+
if device != model.device:
|
80 |
+
model.to(device)
|
81 |
+
|
82 |
+
# run inference - docs
|
83 |
+
dataloader = DataLoader(
|
84 |
+
images,
|
85 |
+
batch_size=4,
|
86 |
+
shuffle=False,
|
87 |
+
collate_fn=lambda x: processor(images=x).to(model.device),
|
88 |
+
)
|
89 |
+
|
90 |
+
for batch_doc in tqdm(dataloader):
|
91 |
+
with torch.no_grad():
|
92 |
+
batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
|
93 |
+
embeddings_doc = model(**batch_doc).embeddings
|
94 |
+
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
95 |
+
return f"Uploaded and converted {len(images)} pages", ds, images
|
96 |
+
|
97 |
+
|
98 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
99 |
+
gr.Markdown(
|
100 |
+
"# ColPali: Efficient Document Retrieval with Vision Language Models π"
|
101 |
+
)
|
102 |
+
gr.Markdown("""Demo to test the Transformers π€ implementation of ColPali on PDF documents.<br>
|
103 |
+
ColPali is the model implemented from the [ColPali paper](https://arxiv.org/abs/2407.01449).<br>
|
104 |
+
This demo allows you to upload PDF files and search for the most relevant pages based on your query.
|
105 |
+
Refresh the page if you change documents!<br>
|
106 |
+
β οΈ This demo uses a model trained exclusively on A4 PDFs in portrait mode, containing english text. Performance is expected to drop for other page formats and languages.<br>
|
107 |
+
Other models will be released with better robustness towards different languages and document formats!
|
108 |
+
Demo by [manu](https://huggingface.co/spaces/manu/ColPali-demo)
|
109 |
+
""")
|
110 |
+
with gr.Row():
|
111 |
+
with gr.Column(scale=2):
|
112 |
+
gr.Markdown("## 1οΈβ£ Upload PDFs")
|
113 |
+
file = gr.File(
|
114 |
+
file_types=["pdf"], file_count="multiple", label="Upload PDFs"
|
115 |
+
)
|
116 |
+
|
117 |
+
convert_button = gr.Button("π Index documents")
|
118 |
+
message = gr.Textbox("Files not yet uploaded", label="Status")
|
119 |
+
embeds = gr.State(value=[])
|
120 |
+
imgs = gr.State(value=[])
|
121 |
+
|
122 |
+
with gr.Column(scale=3):
|
123 |
+
gr.Markdown("## 2οΈβ£ Search")
|
124 |
+
query = gr.Textbox(placeholder="Enter your query here", label="Query")
|
125 |
+
k = gr.Slider(
|
126 |
+
minimum=1, maximum=10, step=1, label="Number of results", value=5
|
127 |
+
)
|
128 |
+
|
129 |
+
# Define the actions
|
130 |
+
search_button = gr.Button("π Search", variant="primary")
|
131 |
+
output_gallery = gr.Gallery(
|
132 |
+
label="Retrieved Documents", height=600, show_label=True
|
133 |
+
)
|
134 |
+
|
135 |
+
convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs])
|
136 |
+
search_button.click(
|
137 |
+
search, inputs=[query, embeds, imgs, k], outputs=[output_gallery]
|
138 |
+
)
|
139 |
+
|
140 |
+
if __name__ == "__main__":
|
141 |
+
demo.queue(max_size=10).launch(debug=True)
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
poppler-utils
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
git+https://github.com/huggingface/transformers.git@main
|
3 |
+
pdf2image
|