Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
class FeatsClassStage(object): | |
def __init__(self): | |
pass | |
def eval(self): | |
return self | |
def encode(self, c): | |
"""fake vqmodel interface because self.cond_stage_model should have something | |
similar to coord.py but even more `dummy`""" | |
# assert 0.0 <= c.min() and c.max() <= 1.0 | |
info = None, None, c | |
return c, None, info | |
def decode(self, c): | |
return c | |
def get_input(self, batch: dict, keys: dict) -> dict: | |
out = {} | |
for k in keys: | |
if k == 'target': | |
out[k] = batch[k].unsqueeze(1) | |
elif k == 'feature': | |
out[k] = batch[k].float().permute(0, 2, 1) | |
out[k] = out[k].to(memory_format=torch.contiguous_format) | |
return out | |