Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,565 Bytes
7f2690b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import torch
import torch.nn as nn
import torch.utils.checkpoint
from typing import Any, Optional, Tuple, Union
class Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, hidden_size, num_attention_heads, attention_head_dim, attention_dropout=0.0):
super().__init__()
self.embed_dim = hidden_size
self.num_heads = num_attention_heads
self.head_dim = attention_head_dim
self.scale = self.head_dim**-0.5
self.dropout = attention_dropout
self.inner_dim = self.head_dim * self.num_heads
self.k_proj = nn.Linear(self.embed_dim, self.inner_dim)
self.v_proj = nn.Linear(self.embed_dim, self.inner_dim)
self.q_proj = nn.Linear(self.embed_dim, self.inner_dim)
self.out_proj = nn.Linear(self.inner_dim, self.embed_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {causal_attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, self.inner_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
class MLP(nn.Module):
def __init__(self, hidden_size, intermediate_size, mult=4):
super().__init__()
self.activation_fn = nn.SiLU()
self.fc1 = nn.Linear(hidden_size, intermediate_size * mult)
self.fc2 = nn.Linear(intermediate_size * mult, hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class Transformer(nn.Module):
def __init__(self, depth=12):
super().__init__()
self.layers = nn.ModuleList([TransformerBlock() for _ in range(depth)])
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor=None,
causal_attention_mask: torch.Tensor=None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
for layer in self.layers:
hidden_states = layer(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
return hidden_states
class TransformerBlock(nn.Module):
def __init__(self, hidden_size=512, num_attention_heads=12, attention_head_dim=64, attention_dropout=0.0, dropout=0.0, eps=1e-5):
super().__init__()
self.embed_dim = hidden_size
self.self_attn = Attention(hidden_size=hidden_size, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=eps)
self.mlp = MLP(hidden_size=hidden_size, intermediate_size=hidden_size)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor=None,
causal_attention_mask: torch.Tensor=None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs[0]
class DiffusionTransformerBlock(nn.Module):
def __init__(self, hidden_size=512, num_attention_heads=12, attention_head_dim=64, attention_dropout=0.0, dropout=0.0, eps=1e-5):
super().__init__()
self.embed_dim = hidden_size
self.self_attn = Attention(hidden_size=hidden_size, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=eps)
self.mlp = MLP(hidden_size=hidden_size, intermediate_size=hidden_size)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=eps)
self.output_token = nn.Parameter(torch.randn(1, hidden_size))
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor=None,
causal_attention_mask: torch.Tensor=None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
output_token = self.output_token.unsqueeze(0).repeat(hidden_states.shape[0], 1, 1)
hidden_states = torch.cat([output_token, hidden_states], dim=1)
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs[0][:,0:1,...]
class V2AMapperMLP(nn.Module):
def __init__(self, input_dim=512, output_dim=512, expansion_rate=4):
super().__init__()
self.linear = nn.Linear(input_dim, input_dim * expansion_rate)
self.silu = nn.SiLU()
self.layer_norm = nn.LayerNorm(input_dim * expansion_rate)
self.linear2 = nn.Linear(input_dim * expansion_rate, output_dim)
def forward(self, x):
x = self.linear(x)
x = self.silu(x)
x = self.layer_norm(x)
x = self.linear2(x)
return x
class ImageProjModel(torch.nn.Module):
"""Projection Model"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
super().__init__()
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
self.norm = torch.nn.LayerNorm(cross_attention_dim)
self.zero_initialize_last_layer()
def zero_initialize_last_layer(module):
last_layer = None
for module_name, layer in module.named_modules():
if isinstance(layer, torch.nn.Linear):
last_layer = layer
if last_layer is not None:
last_layer.weight.data.zero_()
last_layer.bias.data.zero_()
def forward(self, image_embeds):
embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape(
-1, self.clip_extra_context_tokens, self.cross_attention_dim
)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
class VisionAudioAdapter(torch.nn.Module):
def __init__(
self,
embedding_size=768,
expand_dim=4,
token_num=4,
):
super().__init__()
self.mapper = V2AMapperMLP(
embedding_size,
embedding_size,
expansion_rate=expand_dim,
)
self.proj = ImageProjModel(
cross_attention_dim=embedding_size,
clip_embeddings_dim=embedding_size,
clip_extra_context_tokens=token_num,
)
def forward(self, image_embeds):
image_embeds = self.mapper(image_embeds)
image_embeds = self.proj(image_embeds)
return image_embeds
|