Spaces:
Runtime error
Runtime error
File size: 10,986 Bytes
b7a0d37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import os
import random
import re
import numpy as np
import librosa
import torch
import random
from utils import repeat_expand_2d
from tqdm import tqdm
from torch.utils.data import Dataset
def traverse_dir(
root_dir,
extensions,
amount=None,
str_include=None,
str_exclude=None,
is_pure=False,
is_sort=False,
is_ext=True):
file_list = []
cnt = 0
for root, _, files in os.walk(root_dir):
for file in files:
if any([file.endswith(f".{ext}") for ext in extensions]):
# path
mix_path = os.path.join(root, file)
pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path
# amount
if (amount is not None) and (cnt == amount):
if is_sort:
file_list.sort()
return file_list
# check string
if (str_include is not None) and (str_include not in pure_path):
continue
if (str_exclude is not None) and (str_exclude in pure_path):
continue
if not is_ext:
ext = pure_path.split('.')[-1]
pure_path = pure_path[:-(len(ext)+1)]
file_list.append(pure_path)
cnt += 1
if is_sort:
file_list.sort()
return file_list
def get_data_loaders(args, whole_audio=False):
data_train = AudioDataset(
filelists = args.data.training_files,
waveform_sec=args.data.duration,
hop_size=args.data.block_size,
sample_rate=args.data.sampling_rate,
load_all_data=args.train.cache_all_data,
whole_audio=whole_audio,
extensions=args.data.extensions,
n_spk=args.model.n_spk,
spk=args.spk,
device=args.train.cache_device,
fp16=args.train.cache_fp16,
unit_interpolate_mode = args.data.unit_interpolate_mode,
use_aug=True)
loader_train = torch.utils.data.DataLoader(
data_train ,
batch_size=args.train.batch_size if not whole_audio else 1,
shuffle=True,
num_workers=args.train.num_workers if args.train.cache_device=='cpu' else 0,
persistent_workers=(args.train.num_workers > 0) if args.train.cache_device=='cpu' else False,
pin_memory=True if args.train.cache_device=='cpu' else False
)
data_valid = AudioDataset(
filelists = args.data.validation_files,
waveform_sec=args.data.duration,
hop_size=args.data.block_size,
sample_rate=args.data.sampling_rate,
load_all_data=args.train.cache_all_data,
whole_audio=True,
spk=args.spk,
extensions=args.data.extensions,
unit_interpolate_mode = args.data.unit_interpolate_mode,
n_spk=args.model.n_spk)
loader_valid = torch.utils.data.DataLoader(
data_valid,
batch_size=1,
shuffle=False,
num_workers=0,
pin_memory=True
)
return loader_train, loader_valid
class AudioDataset(Dataset):
def __init__(
self,
filelists,
waveform_sec,
hop_size,
sample_rate,
spk,
load_all_data=True,
whole_audio=False,
extensions=['wav'],
n_spk=1,
device='cpu',
fp16=False,
use_aug=False,
unit_interpolate_mode = 'left'
):
super().__init__()
self.waveform_sec = waveform_sec
self.sample_rate = sample_rate
self.hop_size = hop_size
self.filelists = filelists
self.whole_audio = whole_audio
self.use_aug = use_aug
self.data_buffer={}
self.pitch_aug_dict = {}
self.unit_interpolate_mode = unit_interpolate_mode
# np.load(os.path.join(self.path_root, 'pitch_aug_dict.npy'), allow_pickle=True).item()
if load_all_data:
print('Load all the data filelists:', filelists)
else:
print('Load the f0, volume data filelists:', filelists)
with open(filelists,"r") as f:
self.paths = f.read().splitlines()
for name_ext in tqdm(self.paths, total=len(self.paths)):
name = os.path.splitext(name_ext)[0]
path_audio = name_ext
duration = librosa.get_duration(filename = path_audio, sr = self.sample_rate)
path_f0 = name_ext + ".f0.npy"
f0,_ = np.load(path_f0,allow_pickle=True)
f0 = torch.from_numpy(np.array(f0,dtype=float)).float().unsqueeze(-1).to(device)
path_volume = name_ext + ".vol.npy"
volume = np.load(path_volume)
volume = torch.from_numpy(volume).float().unsqueeze(-1).to(device)
path_augvol = name_ext + ".aug_vol.npy"
aug_vol = np.load(path_augvol)
aug_vol = torch.from_numpy(aug_vol).float().unsqueeze(-1).to(device)
if n_spk is not None and n_spk > 1:
spk_name = name_ext.split("/")[-2]
spk_id = spk[spk_name] if spk_name in spk else 0
if spk_id < 0 or spk_id >= n_spk:
raise ValueError(' [x] Muiti-speaker traing error : spk_id must be a positive integer from 0 to n_spk-1 ')
else:
spk_id = 0
spk_id = torch.LongTensor(np.array([spk_id])).to(device)
if load_all_data:
'''
audio, sr = librosa.load(path_audio, sr=self.sample_rate)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio)
audio = torch.from_numpy(audio).to(device)
'''
path_mel = name_ext + ".mel.npy"
mel = np.load(path_mel)
mel = torch.from_numpy(mel).to(device)
path_augmel = name_ext + ".aug_mel.npy"
aug_mel,keyshift = np.load(path_augmel, allow_pickle=True)
aug_mel = np.array(aug_mel,dtype=float)
aug_mel = torch.from_numpy(aug_mel).to(device)
self.pitch_aug_dict[name_ext] = keyshift
path_units = name_ext + ".soft.pt"
units = torch.load(path_units).to(device)
units = units[0]
units = repeat_expand_2d(units,f0.size(0),unit_interpolate_mode).transpose(0,1)
if fp16:
mel = mel.half()
aug_mel = aug_mel.half()
units = units.half()
self.data_buffer[name_ext] = {
'duration': duration,
'mel': mel,
'aug_mel': aug_mel,
'units': units,
'f0': f0,
'volume': volume,
'aug_vol': aug_vol,
'spk_id': spk_id
}
else:
path_augmel = name_ext + ".aug_mel.npy"
aug_mel,keyshift = np.load(path_augmel, allow_pickle=True)
self.pitch_aug_dict[name_ext] = keyshift
self.data_buffer[name_ext] = {
'duration': duration,
'f0': f0,
'volume': volume,
'aug_vol': aug_vol,
'spk_id': spk_id
}
def __getitem__(self, file_idx):
name_ext = self.paths[file_idx]
data_buffer = self.data_buffer[name_ext]
# check duration. if too short, then skip
if data_buffer['duration'] < (self.waveform_sec + 0.1):
return self.__getitem__( (file_idx + 1) % len(self.paths))
# get item
return self.get_data(name_ext, data_buffer)
def get_data(self, name_ext, data_buffer):
name = os.path.splitext(name_ext)[0]
frame_resolution = self.hop_size / self.sample_rate
duration = data_buffer['duration']
waveform_sec = duration if self.whole_audio else self.waveform_sec
# load audio
idx_from = 0 if self.whole_audio else random.uniform(0, duration - waveform_sec - 0.1)
start_frame = int(idx_from / frame_resolution)
units_frame_len = int(waveform_sec / frame_resolution)
aug_flag = random.choice([True, False]) and self.use_aug
'''
audio = data_buffer.get('audio')
if audio is None:
path_audio = os.path.join(self.path_root, 'audio', name) + '.wav'
audio, sr = librosa.load(
path_audio,
sr = self.sample_rate,
offset = start_frame * frame_resolution,
duration = waveform_sec)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio)
# clip audio into N seconds
audio = audio[ : audio.shape[-1] // self.hop_size * self.hop_size]
audio = torch.from_numpy(audio).float()
else:
audio = audio[start_frame * self.hop_size : (start_frame + units_frame_len) * self.hop_size]
'''
# load mel
mel_key = 'aug_mel' if aug_flag else 'mel'
mel = data_buffer.get(mel_key)
if mel is None:
mel = name_ext + ".mel.npy"
mel = np.load(mel)
mel = mel[start_frame : start_frame + units_frame_len]
mel = torch.from_numpy(mel).float()
else:
mel = mel[start_frame : start_frame + units_frame_len]
# load f0
f0 = data_buffer.get('f0')
aug_shift = 0
if aug_flag:
aug_shift = self.pitch_aug_dict[name_ext]
f0_frames = 2 ** (aug_shift / 12) * f0[start_frame : start_frame + units_frame_len]
# load units
units = data_buffer.get('units')
if units is None:
path_units = name_ext + ".soft.pt"
units = torch.load(path_units)
units = units[0]
units = repeat_expand_2d(units,f0.size(0),self.unit_interpolate_mode).transpose(0,1)
units = units[start_frame : start_frame + units_frame_len]
# load volume
vol_key = 'aug_vol' if aug_flag else 'volume'
volume = data_buffer.get(vol_key)
volume_frames = volume[start_frame : start_frame + units_frame_len]
# load spk_id
spk_id = data_buffer.get('spk_id')
# load shift
aug_shift = torch.from_numpy(np.array([[aug_shift]])).float()
return dict(mel=mel, f0=f0_frames, volume=volume_frames, units=units, spk_id=spk_id, aug_shift=aug_shift, name=name, name_ext=name_ext)
def __len__(self):
return len(self.paths) |