File size: 6,006 Bytes
b181bc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import math
import multiprocessing
import os
import argparse
from random import shuffle
import random

import torch
from glob import glob
from tqdm import tqdm
from modules.mel_processing import spectrogram_torch
import json

import utils
import logging
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

import diffusion.logger.utils as du 
from diffusion.vocoder import Vocoder

import librosa
import numpy as np

hps = utils.get_hparams_from_file("configs/config.json")
dconfig = du.load_config("configs/diffusion.yaml")
sampling_rate = hps.data.sampling_rate
hop_length = hps.data.hop_length
speech_encoder = hps["model"]["speech_encoder"]


def process_one(filename, hmodel,f0p,diff=False,mel_extractor=None):
    # print(filename)
    wav, sr = librosa.load(filename, sr=sampling_rate)
    audio_norm = torch.FloatTensor(wav)
    audio_norm = audio_norm.unsqueeze(0)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    soft_path = filename + ".soft.pt"
    if not os.path.exists(soft_path):
        wav16k = librosa.resample(wav, orig_sr=sampling_rate, target_sr=16000)
        wav16k = torch.from_numpy(wav16k).to(device)
        c = hmodel.encoder(wav16k)
        torch.save(c.cpu(), soft_path)
        
    f0_path = filename + ".f0.npy"
    if not os.path.exists(f0_path):
        f0_predictor = utils.get_f0_predictor(f0p,sampling_rate=sampling_rate, hop_length=hop_length,device=None,threshold=0.05)
        f0,uv = f0_predictor.compute_f0_uv(
            wav
        )
        np.save(f0_path, np.asanyarray((f0,uv),dtype=object))
    
    
    spec_path = filename.replace(".wav", ".spec.pt")
    if not os.path.exists(spec_path):
        # Process spectrogram
        # The following code can't be replaced by torch.FloatTensor(wav)
        # because load_wav_to_torch return a tensor that need to be normalized

        if sr != hps.data.sampling_rate:
            raise ValueError(
                "{} SR doesn't match target {} SR".format(
                    sr, hps.data.sampling_rate
                )
            )
        
        #audio_norm = audio / hps.data.max_wav_value
        
        spec = spectrogram_torch(
            audio_norm,
            hps.data.filter_length,
            hps.data.sampling_rate,
            hps.data.hop_length,
            hps.data.win_length,
            center=False,
        )
        spec = torch.squeeze(spec, 0)
        torch.save(spec, spec_path)

    if diff or hps.model.vol_embedding:
        volume_path = filename + ".vol.npy"
        volume_extractor = utils.Volume_Extractor(hop_length)
        if not os.path.exists(volume_path):
            volume = volume_extractor.extract(audio_norm)
            np.save(volume_path, volume.to('cpu').numpy())

    if diff:
        mel_path = filename + ".mel.npy"
        if not os.path.exists(mel_path) and mel_extractor is not None:
            mel_t = mel_extractor.extract(audio_norm.to(device), sampling_rate)
            mel = mel_t.squeeze().to('cpu').numpy()
            np.save(mel_path, mel)
        aug_mel_path = filename + ".aug_mel.npy"
        aug_vol_path = filename + ".aug_vol.npy"
        max_amp = float(torch.max(torch.abs(audio_norm))) + 1e-5
        max_shift = min(1, np.log10(1/max_amp))
        log10_vol_shift = random.uniform(-1, max_shift)
        keyshift = random.uniform(-5, 5)
        if mel_extractor is not None:
            aug_mel_t = mel_extractor.extract(audio_norm * (10 ** log10_vol_shift), sampling_rate, keyshift = keyshift)
        aug_mel = aug_mel_t.squeeze().to('cpu').numpy()
        aug_vol = volume_extractor.extract(audio_norm * (10 ** log10_vol_shift))
        if not os.path.exists(aug_mel_path):
            np.save(aug_mel_path,np.asanyarray((aug_mel,keyshift),dtype=object))
        if not os.path.exists(aug_vol_path):
            np.save(aug_vol_path,aug_vol.to('cpu').numpy())


def process_batch(filenames,f0p,diff=False,mel_extractor=None):
    print("Loading speech encoder for content...")
    device = "cuda" if torch.cuda.is_available() else "cpu"
    hmodel = utils.get_speech_encoder(speech_encoder,device=device)
    print("Loaded speech encoder.")
    for filename in tqdm(filenames):
        process_one(filename, hmodel,f0p,diff,mel_extractor)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--in_dir", type=str, default="dataset/44k", help="path to input dir"
    )
    parser.add_argument( 
        '--use_diff',action='store_true', help='Whether to use the diffusion model'
    )
    parser.add_argument( 
        '--f0_predictor', type=str, default="dio", help='Select F0 predictor, can select crepe,pm,dio,harvest, default pm(note: crepe is original F0 using mean filter)'
    )
    parser.add_argument( 
        '--num_processes', type=int, default=1, help='You are advised to set the number of processes to the same as the number of CPU cores'
    )
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    args = parser.parse_args()
    f0p = args.f0_predictor
    print(speech_encoder)
    print(f0p)
    if args.use_diff:
        print("use_diff")
        print("Loading Mel Extractor...")
        mel_extractor = Vocoder(dconfig.vocoder.type, dconfig.vocoder.ckpt, device = device)
        print("Loaded Mel Extractor.")
    else:
        mel_extractor = None
    filenames = glob(f"{args.in_dir}/*/*.wav", recursive=True)  # [:10]
    shuffle(filenames)
    multiprocessing.set_start_method("spawn", force=True)
    
    num_processes = args.num_processes
    chunk_size = int(math.ceil(len(filenames) / num_processes))
    chunks = [
        filenames[i : i + chunk_size] for i in range(0, len(filenames), chunk_size)
    ]
    print([len(c) for c in chunks])
    processes = [
        multiprocessing.Process(target=process_batch, args=(chunk,f0p,args.use_diff,mel_extractor)) for chunk in chunks
    ]
    for p in processes:
        p.start()