|
import io |
|
import os |
|
|
|
|
|
import gradio as gr |
|
import gradio.processing_utils as gr_pu |
|
import librosa |
|
import numpy as np |
|
import soundfile |
|
from inference.infer_tool import Svc |
|
import logging |
|
import re |
|
import json |
|
|
|
import subprocess |
|
import edge_tts |
|
import asyncio |
|
from scipy.io import wavfile |
|
import librosa |
|
import torch |
|
import time |
|
import traceback |
|
from itertools import chain |
|
from utils import mix_model |
|
from compress_model import removeOptimizer |
|
|
|
logging.getLogger('numba').setLevel(logging.WARNING) |
|
logging.getLogger('markdown_it').setLevel(logging.WARNING) |
|
logging.getLogger('urllib3').setLevel(logging.WARNING) |
|
logging.getLogger('matplotlib').setLevel(logging.WARNING) |
|
logging.getLogger('multipart').setLevel(logging.WARNING) |
|
|
|
model = None |
|
spk = None |
|
debug = False |
|
|
|
cuda = {} |
|
if torch.cuda.is_available(): |
|
for i in range(torch.cuda.device_count()): |
|
device_name = torch.cuda.get_device_properties(i).name |
|
cuda[f"CUDA:{i} {device_name}"] = f"cuda:{i}" |
|
|
|
def upload_mix_append_file(files,sfiles): |
|
try: |
|
if(sfiles == None): |
|
file_paths = [file.name for file in files] |
|
else: |
|
file_paths = [file.name for file in chain(files,sfiles)] |
|
p = {file:100 for file in file_paths} |
|
return file_paths,mix_model_output1.update(value=json.dumps(p,indent=2)) |
|
except Exception as e: |
|
if debug: traceback.print_exc() |
|
raise gr.Error(e) |
|
|
|
def mix_submit_click(js,mode): |
|
try: |
|
assert js.lstrip()!="" |
|
modes = {"凸组合":0, "线性组合":1} |
|
mode = modes[mode] |
|
data = json.loads(js) |
|
data = list(data.items()) |
|
model_path,mix_rate = zip(*data) |
|
path = mix_model(model_path,mix_rate,mode) |
|
return f"成功,文件被保存在了{path}" |
|
except Exception as e: |
|
if debug: traceback.print_exc() |
|
raise gr.Error(e) |
|
|
|
def updata_mix_info(files): |
|
try: |
|
if files == None : return mix_model_output1.update(value="") |
|
p = {file.name:100 for file in files} |
|
return mix_model_output1.update(value=json.dumps(p,indent=2)) |
|
except Exception as e: |
|
if debug: traceback.print_exc() |
|
raise gr.Error(e) |
|
|
|
def modelAnalysis(model_path,config_path,cluster_model_path,device,enhance,diff_model_path,diff_config_path,only_diffusion,use_spk_mix): |
|
global model |
|
try: |
|
device = cuda[device] if "CUDA" in device else device |
|
cluster_filepath = os.path.split(cluster_model_path.name) if cluster_model_path is not None else "no_cluster" |
|
fr = ".pkl" in cluster_filepath[1] |
|
|
|
model = Svc(model_path.name, |
|
config_path.name, |
|
device=device if device != "Auto" else None, |
|
cluster_model_path = cluster_model_path.name if cluster_model_path is not None else "", |
|
nsf_hifigan_enhance=enhance, |
|
diffusion_model_path = diff_model_path.name if diff_model_path is not None else "", |
|
diffusion_config_path = diff_config_path.name if diff_config_path is not None else "", |
|
shallow_diffusion = True if diff_model_path is not None else False, |
|
only_diffusion = only_diffusion, |
|
spk_mix_enable = use_spk_mix, |
|
feature_retrieval = fr |
|
) |
|
spks = list(model.spk2id.keys()) |
|
device_name = torch.cuda.get_device_properties(model.dev).name if "cuda" in str(model.dev) else str(model.dev) |
|
msg = f"成功加载模型到设备{device_name}上\n" |
|
if cluster_model_path is None: |
|
msg += "未加载聚类模型或特征检索模型\n" |
|
elif fr: |
|
msg += f"特征检索模型{cluster_filepath[1]}加载成功\n" |
|
else: |
|
msg += f"聚类模型{cluster_filepath[1]}加载成功\n" |
|
if diff_model_path is None: |
|
msg += "未加载扩散模型\n" |
|
else: |
|
msg += f"扩散模型{diff_model_path.name}加载成功\n" |
|
msg += "当前模型的可用音色:\n" |
|
for i in spks: |
|
msg += i + " " |
|
return sid.update(choices = spks,value=spks[0]), msg |
|
except Exception as e: |
|
if debug: traceback.print_exc() |
|
raise gr.Error(e) |
|
|
|
|
|
def modelUnload(): |
|
global model |
|
if model is None: |
|
return sid.update(choices = [],value=""),"没有模型需要卸载!" |
|
else: |
|
model.unload_model() |
|
model = None |
|
torch.cuda.empty_cache() |
|
return sid.update(choices = [],value=""),"模型卸载完毕!" |
|
|
|
def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,f0_predictor,enhancer_adaptive_key,cr_threshold,k_step,use_spk_mix,second_encoding,loudness_envelope_adjustment): |
|
global model |
|
try: |
|
if input_audio is None: |
|
return "You need to upload an audio", None |
|
if model is None: |
|
return "You need to upload an model", None |
|
print(input_audio) |
|
sampling_rate, audio = input_audio |
|
print(audio.shape,sampling_rate) |
|
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) |
|
print(audio.dtype) |
|
if len(audio.shape) > 1: |
|
audio = librosa.to_mono(audio.transpose(1, 0)) |
|
temp_path = "temp.wav" |
|
soundfile.write(temp_path, audio, sampling_rate, format="wav") |
|
_audio = model.slice_inference( |
|
temp_path, |
|
sid, |
|
vc_transform, |
|
slice_db, |
|
cluster_ratio, |
|
auto_f0, |
|
noise_scale, |
|
pad_seconds, |
|
cl_num, |
|
lg_num, |
|
lgr_num, |
|
f0_predictor, |
|
enhancer_adaptive_key, |
|
cr_threshold, |
|
k_step, |
|
use_spk_mix, |
|
second_encoding, |
|
loudness_envelope_adjustment |
|
) |
|
model.clear_empty() |
|
os.remove(temp_path) |
|
|
|
timestamp = str(int(time.time())) |
|
if not os.path.exists("results"): |
|
os.makedirs("results") |
|
output_file = os.path.join("results", sid + "_" + timestamp + ".wav") |
|
soundfile.write(output_file, _audio, model.target_sample, format="wav") |
|
return "Success", output_file |
|
except Exception as e: |
|
if debug: traceback.print_exc() |
|
raise gr.Error(e) |
|
|
|
def tts_func(_text,_rate,_voice): |
|
|
|
|
|
|
|
voice = "zh-CN-YunxiNeural" |
|
if ( _voice == "女" ) : voice = "zh-CN-XiaoyiNeural" |
|
output_file = _text[0:10]+".wav" |
|
|
|
|
|
if _rate>=0: |
|
ratestr="+{:.0%}".format(_rate) |
|
elif _rate<0: |
|
ratestr="{:.0%}".format(_rate) |
|
|
|
p=subprocess.Popen("edge-tts "+ |
|
" --text "+_text+ |
|
" --write-media "+output_file+ |
|
" --voice "+voice+ |
|
" --rate="+ratestr |
|
,shell=True, |
|
stdout=subprocess.PIPE, |
|
stdin=subprocess.PIPE) |
|
p.wait() |
|
return output_file |
|
|
|
def text_clear(text): |
|
return re.sub(r"[\n\,\(\) ]", "", text) |
|
|
|
def vc_fn2(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,text2tts,tts_rate,tts_voice,f0_predictor,enhancer_adaptive_key,cr_threshold): |
|
|
|
text2tts=text_clear(text2tts) |
|
output_file=tts_func(text2tts,tts_rate,tts_voice) |
|
|
|
|
|
sr2=44100 |
|
wav, sr = librosa.load(output_file) |
|
wav2 = librosa.resample(wav, orig_sr=sr, target_sr=sr2) |
|
save_path2= text2tts[0:10]+"_44k"+".wav" |
|
wavfile.write(save_path2,sr2, |
|
(wav2 * np.iinfo(np.int16).max).astype(np.int16) |
|
) |
|
|
|
|
|
sample_rate, data=gr_pu.audio_from_file(save_path2) |
|
vc_input=(sample_rate, data) |
|
|
|
a,b=vc_fn(sid, vc_input, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,f0_predictor,enhancer_adaptive_key,cr_threshold) |
|
os.remove(output_file) |
|
os.remove(save_path2) |
|
return a,b |
|
|
|
def model_compression(_model): |
|
if _model == "": |
|
return "请先选择要压缩的模型" |
|
else: |
|
model_path = os.path.split(_model.name) |
|
filename, extension = os.path.splitext(model_path[1]) |
|
output_model_name = f"{filename}_compressed{extension}" |
|
output_path = os.path.join(os.getcwd(), output_model_name) |
|
removeOptimizer(_model.name, output_path) |
|
return f"模型已成功被保存在了{output_path}" |
|
|
|
def debug_change(): |
|
global debug |
|
debug = debug_button.value |
|
|
|
with gr.Blocks( |
|
theme=gr.themes.Base( |
|
primary_hue = gr.themes.colors.green, |
|
font=["Source Sans Pro", "Arial", "sans-serif"], |
|
font_mono=['JetBrains mono', "Consolas", 'Courier New'] |
|
), |
|
) as app: |
|
with gr.Tabs(): |
|
with gr.TabItem("推理"): |
|
gr.Markdown(value=""" |
|
So-vits-svc 4.0 推理 webui |
|
""") |
|
with gr.Row(variant="panel"): |
|
with gr.Column(): |
|
gr.Markdown(value=""" |
|
<font size=2> 模型设置</font> |
|
""") |
|
with gr.Row(): |
|
model_path = gr.File(label="选择模型文件") |
|
config_path = gr.File(label="选择配置文件") |
|
with gr.Row(): |
|
diff_model_path = gr.File(label="选择扩散模型文件") |
|
diff_config_path = gr.File(label="选择扩散模型配置文件") |
|
cluster_model_path = gr.File(label="选择聚类模型或特征检索文件(没有可以不选)") |
|
device = gr.Dropdown(label="推理设备,默认为自动选择CPU和GPU", choices=["Auto",*cuda.keys(),"cpu"], value="Auto") |
|
enhance = gr.Checkbox(label="是否使用NSF_HIFIGAN增强,该选项对部分训练集少的模型有一定的音质增强效果,但是对训练好的模型有反面效果,默认关闭", value=False) |
|
only_diffusion = gr.Checkbox(label="是否使用全扩散推理,开启后将不使用So-VITS模型,仅使用扩散模型进行完整扩散推理,默认关闭", value=False) |
|
with gr.Column(): |
|
gr.Markdown(value=""" |
|
<font size=3>左侧文件全部选择完毕后(全部文件模块显示download),点击“加载模型”进行解析:</font> |
|
""") |
|
model_load_button = gr.Button(value="加载模型", variant="primary") |
|
model_unload_button = gr.Button(value="卸载模型", variant="primary") |
|
sid = gr.Dropdown(label="音色(说话人)") |
|
sid_output = gr.Textbox(label="Output Message") |
|
|
|
|
|
with gr.Row(variant="panel"): |
|
with gr.Column(): |
|
gr.Markdown(value=""" |
|
<font size=2> 推理设置</font> |
|
""") |
|
auto_f0 = gr.Checkbox(label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声勾选此项会究极跑调)", value=False) |
|
f0_predictor = gr.Dropdown(label="选择F0预测器,可选择crepe,pm,dio,harvest,默认为pm(注意:crepe为原F0使用均值滤波器)", choices=["pm","dio","harvest","crepe"], value="pm") |
|
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0) |
|
cluster_ratio = gr.Number(label="聚类模型/特征检索混合比例,0-1之间,0即不启用聚类/特征检索。使用聚类/特征检索能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0) |
|
slice_db = gr.Number(label="切片阈值", value=-40) |
|
noise_scale = gr.Number(label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4) |
|
k_step = gr.Slider(label="浅扩散步数,只有使用了扩散模型才有效,步数越大越接近扩散模型的结果", value=100, minimum = 1, maximum = 1000) |
|
with gr.Column(): |
|
pad_seconds = gr.Number(label="推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现", value=0.5) |
|
cl_num = gr.Number(label="音频自动切片,0为不切片,单位为秒(s)", value=0) |
|
lg_num = gr.Number(label="两端音频切片的交叉淡入长度,如果自动切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,注意,该设置会影响推理速度,单位为秒/s", value=0) |
|
lgr_num = gr.Number(label="自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭", value=0.75) |
|
enhancer_adaptive_key = gr.Number(label="使增强器适应更高的音域(单位为半音数)|默认为0", value=0) |
|
cr_threshold = gr.Number(label="F0过滤阈值,只有启动crepe时有效. 数值范围从0-1. 降低该值可减少跑调概率,但会增加哑音", value=0.05) |
|
loudness_envelope_adjustment = gr.Number(label="输入源响度包络替换输出响度包络融合比例,越靠近1越使用输出响度包络", value = 0) |
|
second_encoding = gr.Checkbox(label = "二次编码,浅扩散前会对原始音频进行二次编码,玄学选项,效果时好时差,默认关闭", value=False) |
|
use_spk_mix = gr.Checkbox(label = "动态声线融合", value = False, interactive = False) |
|
with gr.Tabs(): |
|
with gr.TabItem("音频转音频"): |
|
vc_input3 = gr.Audio(label="选择音频") |
|
vc_submit = gr.Button("音频转换", variant="primary") |
|
with gr.TabItem("文字转音频"): |
|
text2tts=gr.Textbox(label="在此输入要转译的文字。注意,使用该功能建议打开F0预测,不然会很怪") |
|
tts_rate = gr.Number(label="tts语速", value=0) |
|
tts_voice = gr.Radio(label="性别",choices=["男","女"], value="男") |
|
vc_submit2 = gr.Button("文字转换", variant="primary") |
|
with gr.Row(): |
|
with gr.Column(): |
|
vc_output1 = gr.Textbox(label="Output Message") |
|
with gr.Column(): |
|
vc_output2 = gr.Audio(label="Output Audio", interactive=False) |
|
|
|
with gr.TabItem("小工具/实验室特性"): |
|
gr.Markdown(value=""" |
|
<font size=2> So-vits-svc 4.0 小工具/实验室特性</font> |
|
""") |
|
with gr.Tabs(): |
|
with gr.TabItem("静态声线融合"): |
|
gr.Markdown(value=""" |
|
<font size=2> 介绍:该功能可以将多个声音模型合成为一个声音模型(多个模型参数的凸组合或线性组合),从而制造出现实中不存在的声线 |
|
注意: |
|
1.该功能仅支持单说话人的模型 |
|
2.如果强行使用多说话人模型,需要保证多个模型的说话人数量相同,这样可以混合同一个SpaekerID下的声音 |
|
3.保证所有待混合模型的config.json中的model字段是相同的 |
|
4.输出的混合模型可以使用待合成模型的任意一个config.json,但聚类模型将不能使用 |
|
5.批量上传模型的时候最好把模型放到一个文件夹选中后一起上传 |
|
6.混合比例调整建议大小在0-100之间,也可以调为其他数字,但在线性组合模式下会出现未知的效果 |
|
7.混合完毕后,文件将会保存在项目根目录中,文件名为output.pth |
|
8.凸组合模式会将混合比例执行Softmax使混合比例相加为1,而线性组合模式不会 |
|
</font> |
|
""") |
|
mix_model_path = gr.Files(label="选择需要混合模型文件") |
|
mix_model_upload_button = gr.UploadButton("选择/追加需要混合模型文件", file_count="multiple") |
|
mix_model_output1 = gr.Textbox( |
|
label="混合比例调整,单位/%", |
|
interactive = True |
|
) |
|
mix_mode = gr.Radio(choices=["凸组合", "线性组合"], label="融合模式",value="凸组合",interactive = True) |
|
mix_submit = gr.Button("声线融合启动", variant="primary") |
|
mix_model_output2 = gr.Textbox( |
|
label="Output Message" |
|
) |
|
mix_model_path.change(updata_mix_info,[mix_model_path],[mix_model_output1]) |
|
mix_model_upload_button.upload(upload_mix_append_file, [mix_model_upload_button,mix_model_path], [mix_model_path,mix_model_output1]) |
|
mix_submit.click(mix_submit_click, [mix_model_output1,mix_mode], [mix_model_output2]) |
|
|
|
with gr.TabItem("模型压缩工具"): |
|
gr.Markdown(value=""" |
|
该工具可以实现对模型的体积压缩,在**不影响模型推理功能**的情况下,将原本约600M的So-VITS模型压缩至约200M, 大大减少了硬盘的压力。 |
|
**注意:压缩后的模型将无法继续训练,请在确认封炉后再压缩。** |
|
""") |
|
model_to_compress = gr.File(label="模型上传") |
|
compress_model_btn = gr.Button("压缩模型", variant="primary") |
|
compress_model_output = gr.Textbox(label="输出信息", value="") |
|
|
|
compress_model_btn.click(model_compression, [model_to_compress], [compress_model_output]) |
|
|
|
|
|
with gr.Tabs(): |
|
with gr.Row(variant="panel"): |
|
with gr.Column(): |
|
gr.Markdown(value=""" |
|
<font size=2> WebUI设置</font> |
|
""") |
|
debug_button = gr.Checkbox(label="Debug模式,如果向社区反馈BUG需要打开,打开后控制台可以显示具体错误提示", value=debug) |
|
vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,f0_predictor,enhancer_adaptive_key,cr_threshold,k_step,use_spk_mix,second_encoding,loudness_envelope_adjustment], [vc_output1, vc_output2]) |
|
vc_submit2.click(vc_fn2, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,text2tts,tts_rate,tts_voice,f0_predictor,enhancer_adaptive_key,cr_threshold], [vc_output1, vc_output2]) |
|
debug_button.change(debug_change,[],[]) |
|
model_load_button.click(modelAnalysis,[model_path,config_path,cluster_model_path,device,enhance,diff_model_path,diff_config_path,only_diffusion,use_spk_mix],[sid,sid_output]) |
|
model_unload_button.click(modelUnload,[],[sid,sid_output]) |
|
app.launch() |
|
|
|
|
|
|
|
|