|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import warnings |
|
from typing import Dict, Optional, Tuple |
|
import torch |
|
from torch import Tensor, nn |
|
from torch.nn import Parameter |
|
import torch.nn.functional as F |
|
|
|
|
|
class TransposeLast(nn.Module): |
|
def __init__(self, deconstruct_idx=None): |
|
super().__init__() |
|
self.deconstruct_idx = deconstruct_idx |
|
|
|
def forward(self, x): |
|
if self.deconstruct_idx is not None: |
|
x = x[self.deconstruct_idx] |
|
return x.transpose(-2, -1) |
|
|
|
|
|
class Fp32LayerNorm(nn.LayerNorm): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def forward(self, input): |
|
output = F.layer_norm( |
|
input.float(), |
|
self.normalized_shape, |
|
self.weight.float() if self.weight is not None else None, |
|
self.bias.float() if self.bias is not None else None, |
|
self.eps, |
|
) |
|
return output.type_as(input) |
|
|
|
|
|
class Fp32GroupNorm(nn.GroupNorm): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def forward(self, input): |
|
output = F.group_norm( |
|
input.float(), |
|
self.num_groups, |
|
self.weight.float() if self.weight is not None else None, |
|
self.bias.float() if self.bias is not None else None, |
|
self.eps, |
|
) |
|
return output.type_as(input) |
|
|
|
|
|
class GradMultiply(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, x, scale): |
|
ctx.scale = scale |
|
res = x.new(x) |
|
return res |
|
|
|
@staticmethod |
|
def backward(ctx, grad): |
|
return grad * ctx.scale, None |
|
|
|
|
|
class SamePad(nn.Module): |
|
def __init__(self, kernel_size, causal=False): |
|
super().__init__() |
|
if causal: |
|
self.remove = kernel_size - 1 |
|
else: |
|
self.remove = 1 if kernel_size % 2 == 0 else 0 |
|
|
|
def forward(self, x): |
|
if self.remove > 0: |
|
x = x[:, :, : -self.remove] |
|
return x |
|
|
|
|
|
class Swish(nn.Module): |
|
"""Swish function |
|
""" |
|
|
|
def __init__(self): |
|
"""Construct an MultiHeadedAttention object.""" |
|
super(Swish, self).__init__() |
|
self.act = torch.nn.Sigmoid() |
|
|
|
def forward(self, x): |
|
return x * self.act(x) |
|
|
|
|
|
class GLU_Linear(nn.Module): |
|
def __init__(self, input_dim, output_dim, glu_type="sigmoid", bias_in_glu=True): |
|
super(GLU_Linear, self).__init__() |
|
|
|
self.glu_type = glu_type |
|
self.output_dim = output_dim |
|
|
|
if glu_type == "sigmoid": |
|
self.glu_act = torch.nn.Sigmoid() |
|
elif glu_type == "swish": |
|
self.glu_act = Swish() |
|
elif glu_type == "relu": |
|
self.glu_act = torch.nn.ReLU() |
|
elif glu_type == "gelu": |
|
self.glu_act = torch.nn.GELU() |
|
|
|
if bias_in_glu: |
|
self.linear = nn.Linear(input_dim, output_dim * 2, True) |
|
else: |
|
self.linear = nn.Linear(input_dim, output_dim * 2, False) |
|
|
|
def forward(self, x): |
|
|
|
x = self.linear(x) |
|
|
|
if self.glu_type == "bilinear": |
|
x = (x[:, :, 0:self.output_dim] * x[:, :, self.output_dim:self.output_dim * 2]) |
|
else: |
|
x = (x[:, :, 0:self.output_dim] * self.glu_act(x[:, :, self.output_dim:self.output_dim * 2])) |
|
|
|
return x |
|
|
|
|
|
def gelu_accurate(x): |
|
if not hasattr(gelu_accurate, "_a"): |
|
gelu_accurate._a = math.sqrt(2 / math.pi) |
|
return ( |
|
0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3)))) |
|
) |
|
|
|
|
|
def gelu(x: torch.Tensor) -> torch.Tensor: |
|
return torch.nn.functional.gelu(x.float()).type_as(x) |
|
|
|
|
|
def get_activation_fn(activation: str): |
|
"""Returns the activation function corresponding to `activation`""" |
|
|
|
if activation == "relu": |
|
return F.relu |
|
elif activation == "gelu": |
|
return gelu |
|
elif activation == "gelu_fast": |
|
warnings.warn( |
|
"--activation-fn=gelu_fast has been renamed to gelu_accurate" |
|
) |
|
return gelu_accurate |
|
elif activation == "gelu_accurate": |
|
return gelu_accurate |
|
elif activation == "tanh": |
|
return torch.tanh |
|
elif activation == "linear": |
|
return lambda x: x |
|
elif activation == "glu": |
|
return lambda x: x |
|
else: |
|
raise RuntimeError("--activation-fn {} not supported".format(activation)) |
|
|
|
|
|
def init_bert_params(module): |
|
""" |
|
Initialize the weights specific to the BERT Model. |
|
This overrides the default initializations depending on the specified arguments. |
|
1. If normal_init_linear_weights is set then weights of linear |
|
layer will be initialized using the normal distribution and |
|
bais will be set to the specified value. |
|
2. If normal_init_embed_weights is set then weights of embedding |
|
layer will be initialized using the normal distribution. |
|
3. If normal_init_proj_weights is set then weights of |
|
in_project_weight for MultiHeadAttention initialized using |
|
the normal distribution (to be validated). |
|
""" |
|
|
|
def normal_(data): |
|
|
|
|
|
data.copy_( |
|
data.cpu().normal_(mean=0.0, std=0.02).to(data.device) |
|
) |
|
|
|
if isinstance(module, nn.Linear): |
|
normal_(module.weight.data) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
if isinstance(module, nn.Embedding): |
|
normal_(module.weight.data) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
if isinstance(module, MultiheadAttention): |
|
normal_(module.q_proj.weight.data) |
|
normal_(module.k_proj.weight.data) |
|
normal_(module.v_proj.weight.data) |
|
|
|
|
|
def quant_noise(module, p, block_size): |
|
""" |
|
Wraps modules and applies quantization noise to the weights for |
|
subsequent quantization with Iterative Product Quantization as |
|
described in "Training with Quantization Noise for Extreme Model Compression" |
|
|
|
Args: |
|
- module: nn.Module |
|
- p: amount of Quantization Noise |
|
- block_size: size of the blocks for subsequent quantization with iPQ |
|
|
|
Remarks: |
|
- Module weights must have the right sizes wrt the block size |
|
- Only Linear, Embedding and Conv2d modules are supported for the moment |
|
- For more detail on how to quantize by blocks with convolutional weights, |
|
see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks" |
|
- We implement the simplest form of noise here as stated in the paper |
|
which consists in randomly dropping blocks |
|
""" |
|
|
|
|
|
if p <= 0: |
|
return module |
|
|
|
|
|
assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d)) |
|
|
|
|
|
is_conv = module.weight.ndim == 4 |
|
|
|
|
|
if not is_conv: |
|
assert ( |
|
module.weight.size(1) % block_size == 0 |
|
), "Input features must be a multiple of block sizes" |
|
|
|
|
|
else: |
|
|
|
if module.kernel_size == (1, 1): |
|
assert ( |
|
module.in_channels % block_size == 0 |
|
), "Input channels must be a multiple of block sizes" |
|
|
|
else: |
|
k = module.kernel_size[0] * module.kernel_size[1] |
|
assert k % block_size == 0, "Kernel size must be a multiple of block size" |
|
|
|
def _forward_pre_hook(mod, input): |
|
|
|
if mod.training: |
|
if not is_conv: |
|
|
|
weight = mod.weight |
|
in_features = weight.size(1) |
|
out_features = weight.size(0) |
|
|
|
|
|
mask = torch.zeros( |
|
in_features // block_size * out_features, device=weight.device |
|
) |
|
mask.bernoulli_(p) |
|
mask = mask.repeat_interleave(block_size, -1).view(-1, in_features) |
|
|
|
else: |
|
|
|
weight = mod.weight |
|
in_channels = mod.in_channels |
|
out_channels = mod.out_channels |
|
|
|
|
|
if mod.kernel_size == (1, 1): |
|
mask = torch.zeros( |
|
int(in_channels // block_size * out_channels), |
|
device=weight.device, |
|
) |
|
mask.bernoulli_(p) |
|
mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels) |
|
else: |
|
mask = torch.zeros( |
|
weight.size(0), weight.size(1), device=weight.device |
|
) |
|
mask.bernoulli_(p) |
|
mask = ( |
|
mask.unsqueeze(2) |
|
.unsqueeze(3) |
|
.repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1]) |
|
) |
|
|
|
|
|
mask = mask.to( |
|
torch.bool |
|
) |
|
s = 1 / (1 - p) |
|
mod.weight.data = s * weight.masked_fill(mask, 0) |
|
|
|
module.register_forward_pre_hook(_forward_pre_hook) |
|
return module |
|
|
|
|
|
class MultiheadAttention(nn.Module): |
|
"""Multi-headed attention. |
|
|
|
See "Attention Is All You Need" for more details. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim, |
|
num_heads, |
|
kdim=None, |
|
vdim=None, |
|
dropout=0.0, |
|
bias=True, |
|
add_bias_kv=False, |
|
add_zero_attn=False, |
|
self_attention=False, |
|
encoder_decoder_attention=False, |
|
q_noise=0.0, |
|
qn_block_size=8, |
|
has_relative_attention_bias=False, |
|
num_buckets=32, |
|
max_distance=128, |
|
gru_rel_pos=False, |
|
rescale_init=False, |
|
): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.kdim = kdim if kdim is not None else embed_dim |
|
self.vdim = vdim if vdim is not None else embed_dim |
|
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim |
|
|
|
self.num_heads = num_heads |
|
self.dropout_module = nn.Dropout(dropout) |
|
|
|
self.has_relative_attention_bias = has_relative_attention_bias |
|
self.num_buckets = num_buckets |
|
self.max_distance = max_distance |
|
if self.has_relative_attention_bias: |
|
self.relative_attention_bias = nn.Embedding(num_buckets, num_heads) |
|
|
|
self.head_dim = embed_dim // num_heads |
|
self.q_head_dim = self.head_dim |
|
self.k_head_dim = self.head_dim |
|
assert ( |
|
self.head_dim * num_heads == self.embed_dim |
|
), "embed_dim must be divisible by num_heads" |
|
self.scaling = self.head_dim ** -0.5 |
|
|
|
self.self_attention = self_attention |
|
self.encoder_decoder_attention = encoder_decoder_attention |
|
|
|
assert not self.self_attention or self.qkv_same_dim, ( |
|
"Self-attention requires query, key and " "value to be of the same size" |
|
) |
|
|
|
k_bias = True |
|
if rescale_init: |
|
k_bias = False |
|
|
|
k_embed_dim = embed_dim |
|
q_embed_dim = embed_dim |
|
|
|
self.k_proj = quant_noise( |
|
nn.Linear(self.kdim, k_embed_dim, bias=k_bias), q_noise, qn_block_size |
|
) |
|
self.v_proj = quant_noise( |
|
nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size |
|
) |
|
self.q_proj = quant_noise( |
|
nn.Linear(embed_dim, q_embed_dim, bias=bias), q_noise, qn_block_size |
|
) |
|
|
|
self.out_proj = quant_noise( |
|
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size |
|
) |
|
|
|
if add_bias_kv: |
|
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) |
|
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) |
|
else: |
|
self.bias_k = self.bias_v = None |
|
|
|
self.add_zero_attn = add_zero_attn |
|
|
|
self.gru_rel_pos = gru_rel_pos |
|
if self.gru_rel_pos: |
|
self.grep_linear = nn.Linear(self.q_head_dim, 8) |
|
self.grep_a = nn.Parameter(torch.ones(1, num_heads, 1, 1)) |
|
|
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
if self.qkv_same_dim: |
|
|
|
|
|
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) |
|
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) |
|
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) |
|
else: |
|
nn.init.xavier_uniform_(self.k_proj.weight) |
|
nn.init.xavier_uniform_(self.v_proj.weight) |
|
nn.init.xavier_uniform_(self.q_proj.weight) |
|
|
|
nn.init.xavier_uniform_(self.out_proj.weight) |
|
if self.out_proj.bias is not None: |
|
nn.init.constant_(self.out_proj.bias, 0.0) |
|
if self.bias_k is not None: |
|
nn.init.xavier_normal_(self.bias_k) |
|
if self.bias_v is not None: |
|
nn.init.xavier_normal_(self.bias_v) |
|
if self.has_relative_attention_bias: |
|
nn.init.xavier_normal_(self.relative_attention_bias.weight) |
|
|
|
def _relative_positions_bucket(self, relative_positions, bidirectional=True): |
|
num_buckets = self.num_buckets |
|
max_distance = self.max_distance |
|
relative_buckets = 0 |
|
|
|
if bidirectional: |
|
num_buckets = num_buckets // 2 |
|
relative_buckets += (relative_positions > 0).to(torch.long) * num_buckets |
|
relative_positions = torch.abs(relative_positions) |
|
else: |
|
relative_positions = -torch.min(relative_positions, torch.zeros_like(relative_positions)) |
|
|
|
max_exact = num_buckets // 2 |
|
is_small = relative_positions < max_exact |
|
|
|
relative_postion_if_large = max_exact + ( |
|
torch.log(relative_positions.float() / max_exact) |
|
/ math.log(max_distance / max_exact) |
|
* (num_buckets - max_exact) |
|
).to(torch.long) |
|
relative_postion_if_large = torch.min( |
|
relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1) |
|
) |
|
|
|
relative_buckets += torch.where(is_small, relative_positions, relative_postion_if_large) |
|
return relative_buckets |
|
|
|
def compute_bias(self, query_length, key_length): |
|
context_position = torch.arange(query_length, dtype=torch.long)[:, None] |
|
memory_position = torch.arange(key_length, dtype=torch.long)[None, :] |
|
relative_position = memory_position - context_position |
|
relative_position_bucket = self._relative_positions_bucket( |
|
relative_position, |
|
bidirectional=True |
|
) |
|
relative_position_bucket = relative_position_bucket.to(self.relative_attention_bias.weight.device) |
|
values = self.relative_attention_bias(relative_position_bucket) |
|
values = values.permute([2, 0, 1]) |
|
return values |
|
|
|
def forward( |
|
self, |
|
query, |
|
key: Optional[Tensor], |
|
value: Optional[Tensor], |
|
key_padding_mask: Optional[Tensor] = None, |
|
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, |
|
need_weights: bool = True, |
|
static_kv: bool = False, |
|
attn_mask: Optional[Tensor] = None, |
|
before_softmax: bool = False, |
|
need_head_weights: bool = False, |
|
position_bias: Optional[Tensor] = None |
|
) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]: |
|
"""Input shape: Time x Batch x Channel |
|
|
|
Args: |
|
key_padding_mask (ByteTensor, optional): mask to exclude |
|
keys that are pads, of shape `(batch, src_len)`, where |
|
padding elements are indicated by 1s. |
|
need_weights (bool, optional): return the attention weights, |
|
averaged over heads (default: False). |
|
attn_mask (ByteTensor, optional): typically used to |
|
implement causal attention, where the mask prevents the |
|
attention from looking forward in time (default: None). |
|
before_softmax (bool, optional): return the raw attention |
|
weights and values before the attention softmax. |
|
need_head_weights (bool, optional): return the attention |
|
weights for each head. Implies *need_weights*. Default: |
|
return the average attention weights over all heads. |
|
""" |
|
if need_head_weights: |
|
need_weights = True |
|
|
|
is_tpu = query.device.type == "xla" |
|
|
|
tgt_len, bsz, embed_dim = query.size() |
|
src_len = tgt_len |
|
assert embed_dim == self.embed_dim |
|
assert list(query.size()) == [tgt_len, bsz, embed_dim] |
|
if key is not None: |
|
src_len, key_bsz, _ = key.size() |
|
if not torch.jit.is_scripting(): |
|
assert key_bsz == bsz |
|
assert value is not None |
|
assert src_len, bsz == value.shape[:2] |
|
|
|
if self.has_relative_attention_bias and position_bias is None: |
|
position_bias = self.compute_bias(tgt_len, src_len) |
|
position_bias = position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1).view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if ( |
|
not is_tpu |
|
and incremental_state is None |
|
and not static_kv |
|
|
|
|
|
and not torch.jit.is_scripting() |
|
and self.q_head_dim == self.head_dim |
|
): |
|
assert key is not None and value is not None |
|
assert attn_mask is None |
|
|
|
attn_mask_rel_pos = None |
|
if position_bias is not None: |
|
attn_mask_rel_pos = position_bias |
|
if self.gru_rel_pos: |
|
query_layer = query.transpose(0, 1) |
|
new_x_shape = query_layer.size()[:-1] + (self.num_heads, -1) |
|
query_layer = query_layer.view(*new_x_shape) |
|
query_layer = query_layer.permute(0, 2, 1, 3) |
|
_B, _H, _L, __ = query_layer.size() |
|
|
|
gate_a, gate_b = torch.sigmoid(self.grep_linear(query_layer).view( |
|
_B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, dim=-1) |
|
gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0 |
|
attn_mask_rel_pos = gate_a_1.view(bsz * self.num_heads, -1, 1) * position_bias |
|
|
|
attn_mask_rel_pos = attn_mask_rel_pos.view((-1, tgt_len, tgt_len)) |
|
k_proj_bias = self.k_proj.bias |
|
if k_proj_bias is None: |
|
k_proj_bias = torch.zeros_like(self.q_proj.bias) |
|
|
|
x, attn = F.multi_head_attention_forward( |
|
query, |
|
key, |
|
value, |
|
self.embed_dim, |
|
self.num_heads, |
|
torch.empty([0]), |
|
torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), |
|
self.bias_k, |
|
self.bias_v, |
|
self.add_zero_attn, |
|
self.dropout_module.p, |
|
self.out_proj.weight, |
|
self.out_proj.bias, |
|
self.training, |
|
|
|
key_padding_mask, |
|
need_weights, |
|
attn_mask_rel_pos, |
|
use_separate_proj_weight=True, |
|
q_proj_weight=self.q_proj.weight, |
|
k_proj_weight=self.k_proj.weight, |
|
v_proj_weight=self.v_proj.weight, |
|
) |
|
return x, attn, position_bias |
|
|
|
if incremental_state is not None: |
|
saved_state = self._get_input_buffer(incremental_state) |
|
if saved_state is not None and "prev_key" in saved_state: |
|
|
|
|
|
if static_kv: |
|
assert self.encoder_decoder_attention and not self.self_attention |
|
key = value = None |
|
else: |
|
saved_state = None |
|
|
|
if self.self_attention: |
|
q = self.q_proj(query) |
|
k = self.k_proj(query) |
|
v = self.v_proj(query) |
|
elif self.encoder_decoder_attention: |
|
|
|
q = self.q_proj(query) |
|
if key is None: |
|
assert value is None |
|
k = v = None |
|
else: |
|
k = self.k_proj(key) |
|
v = self.v_proj(key) |
|
|
|
else: |
|
assert key is not None and value is not None |
|
q = self.q_proj(query) |
|
k = self.k_proj(key) |
|
v = self.v_proj(value) |
|
q *= self.scaling |
|
|
|
if self.bias_k is not None: |
|
assert self.bias_v is not None |
|
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) |
|
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) |
|
if attn_mask is not None: |
|
attn_mask = torch.cat( |
|
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 |
|
) |
|
if key_padding_mask is not None: |
|
key_padding_mask = torch.cat( |
|
[ |
|
key_padding_mask, |
|
key_padding_mask.new_zeros(key_padding_mask.size(0), 1), |
|
], |
|
dim=1, |
|
) |
|
|
|
q = ( |
|
q.contiguous() |
|
.view(tgt_len, bsz * self.num_heads, self.q_head_dim) |
|
.transpose(0, 1) |
|
) |
|
if k is not None: |
|
k = ( |
|
k.contiguous() |
|
.view(-1, bsz * self.num_heads, self.k_head_dim) |
|
.transpose(0, 1) |
|
) |
|
if v is not None: |
|
v = ( |
|
v.contiguous() |
|
.view(-1, bsz * self.num_heads, self.head_dim) |
|
.transpose(0, 1) |
|
) |
|
|
|
if saved_state is not None: |
|
|
|
if "prev_key" in saved_state: |
|
_prev_key = saved_state["prev_key"] |
|
assert _prev_key is not None |
|
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) |
|
if static_kv: |
|
k = prev_key |
|
else: |
|
assert k is not None |
|
k = torch.cat([prev_key, k], dim=1) |
|
src_len = k.size(1) |
|
if "prev_value" in saved_state: |
|
_prev_value = saved_state["prev_value"] |
|
assert _prev_value is not None |
|
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) |
|
if static_kv: |
|
v = prev_value |
|
else: |
|
assert v is not None |
|
v = torch.cat([prev_value, v], dim=1) |
|
prev_key_padding_mask: Optional[Tensor] = None |
|
if "prev_key_padding_mask" in saved_state: |
|
prev_key_padding_mask = saved_state["prev_key_padding_mask"] |
|
assert k is not None and v is not None |
|
key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( |
|
key_padding_mask=key_padding_mask, |
|
prev_key_padding_mask=prev_key_padding_mask, |
|
batch_size=bsz, |
|
src_len=k.size(1), |
|
static_kv=static_kv, |
|
) |
|
|
|
saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) |
|
saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) |
|
saved_state["prev_key_padding_mask"] = key_padding_mask |
|
|
|
assert incremental_state is not None |
|
incremental_state = self._set_input_buffer(incremental_state, saved_state) |
|
assert k is not None |
|
assert k.size(1) == src_len |
|
|
|
|
|
|
|
if key_padding_mask is not None and key_padding_mask.dim() == 0: |
|
key_padding_mask = None |
|
|
|
if key_padding_mask is not None: |
|
assert key_padding_mask.size(0) == bsz |
|
assert key_padding_mask.size(1) == src_len |
|
|
|
if self.add_zero_attn: |
|
assert v is not None |
|
src_len += 1 |
|
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) |
|
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) |
|
if attn_mask is not None: |
|
attn_mask = torch.cat( |
|
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 |
|
) |
|
if key_padding_mask is not None: |
|
key_padding_mask = torch.cat( |
|
[ |
|
key_padding_mask, |
|
torch.zeros(key_padding_mask.size(0), 1).type_as( |
|
key_padding_mask |
|
), |
|
], |
|
dim=1, |
|
) |
|
|
|
attn_weights = torch.bmm(q, k.transpose(1, 2)) |
|
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) |
|
|
|
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] |
|
|
|
if attn_mask is not None: |
|
attn_mask = attn_mask.unsqueeze(0) |
|
attn_weights += attn_mask |
|
|
|
if key_padding_mask is not None: |
|
|
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
if not is_tpu: |
|
attn_weights = attn_weights.masked_fill( |
|
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), |
|
float("-inf"), |
|
) |
|
else: |
|
attn_weights = attn_weights.transpose(0, 2) |
|
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf")) |
|
attn_weights = attn_weights.transpose(0, 2) |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if before_softmax: |
|
return attn_weights, v, position_bias |
|
|
|
if position_bias is not None: |
|
if self.gru_rel_pos == 1: |
|
query_layer = q.view(bsz, self.num_heads, tgt_len, self.q_head_dim) |
|
_B, _H, _L, __ = query_layer.size() |
|
gate_a, gate_b = torch.sigmoid(self.grep_linear(query_layer).view( |
|
_B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, dim=-1) |
|
gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0 |
|
position_bias = gate_a_1.view(bsz * self.num_heads, -1, 1) * position_bias |
|
|
|
position_bias = position_bias.view(attn_weights.size()) |
|
|
|
attn_weights = attn_weights + position_bias |
|
|
|
attn_weights_float = F.softmax( |
|
attn_weights, dim=-1 |
|
) |
|
attn_weights = attn_weights_float.type_as(attn_weights) |
|
attn_probs = self.dropout_module(attn_weights) |
|
|
|
assert v is not None |
|
attn = torch.bmm(attn_probs, v) |
|
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] |
|
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) |
|
attn = self.out_proj(attn) |
|
attn_weights: Optional[Tensor] = None |
|
if need_weights: |
|
attn_weights = attn_weights_float.view( |
|
bsz, self.num_heads, tgt_len, src_len |
|
).transpose(1, 0) |
|
if not need_head_weights: |
|
|
|
attn_weights = attn_weights.mean(dim=0) |
|
|
|
return attn, attn_weights, position_bias |
|
|
|
@staticmethod |
|
def _append_prev_key_padding_mask( |
|
key_padding_mask: Optional[Tensor], |
|
prev_key_padding_mask: Optional[Tensor], |
|
batch_size: int, |
|
src_len: int, |
|
static_kv: bool, |
|
) -> Optional[Tensor]: |
|
|
|
if prev_key_padding_mask is not None and static_kv: |
|
new_key_padding_mask = prev_key_padding_mask |
|
elif prev_key_padding_mask is not None and key_padding_mask is not None: |
|
new_key_padding_mask = torch.cat( |
|
[prev_key_padding_mask.float(), key_padding_mask.float()], dim=1 |
|
) |
|
|
|
|
|
|
|
elif prev_key_padding_mask is not None: |
|
if src_len > prev_key_padding_mask.size(1): |
|
filler = torch.zeros( |
|
(batch_size, src_len - prev_key_padding_mask.size(1)), |
|
device=prev_key_padding_mask.device, |
|
) |
|
new_key_padding_mask = torch.cat( |
|
[prev_key_padding_mask.float(), filler.float()], dim=1 |
|
) |
|
else: |
|
new_key_padding_mask = prev_key_padding_mask.float() |
|
elif key_padding_mask is not None: |
|
if src_len > key_padding_mask.size(1): |
|
filler = torch.zeros( |
|
(batch_size, src_len - key_padding_mask.size(1)), |
|
device=key_padding_mask.device, |
|
) |
|
new_key_padding_mask = torch.cat( |
|
[filler.float(), key_padding_mask.float()], dim=1 |
|
) |
|
else: |
|
new_key_padding_mask = key_padding_mask.float() |
|
else: |
|
new_key_padding_mask = prev_key_padding_mask |
|
return new_key_padding_mask |
|
|
|
def _get_input_buffer( |
|
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] |
|
) -> Dict[str, Optional[Tensor]]: |
|
result = self.get_incremental_state(incremental_state, "attn_state") |
|
if result is not None: |
|
return result |
|
else: |
|
empty_result: Dict[str, Optional[Tensor]] = {} |
|
return empty_result |
|
|
|
def _set_input_buffer( |
|
self, |
|
incremental_state: Dict[str, Dict[str, Optional[Tensor]]], |
|
buffer: Dict[str, Optional[Tensor]], |
|
): |
|
return self.set_incremental_state(incremental_state, "attn_state", buffer) |
|
|
|
def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int): |
|
return attn_weights |
|
|