|
"""Import Hugging Face transformers's wav2vec2.0 pretrained weights to torchaudios's format. |
|
|
|
Originally from: |
|
https://github.com/pytorch/audio/blob/main/torchaudio/models/wav2vec2/utils/import_huggingface.py |
|
|
|
""" |
|
|
|
import logging |
|
from typing import Any, Dict |
|
|
|
from torch.nn import Module |
|
|
|
from ..model import wav2vec2_model, Wav2Vec2Model, wavlm_model |
|
|
|
_LG = logging.getLogger(__name__) |
|
|
|
|
|
def _get_config(cfg): |
|
config = { |
|
"extractor_mode": f"{cfg.feat_extract_norm}_norm", |
|
"extractor_conv_layer_config": list(zip(cfg.conv_dim, cfg.conv_kernel, cfg.conv_stride)), |
|
"extractor_conv_bias": cfg.conv_bias, |
|
"encoder_embed_dim": cfg.hidden_size, |
|
"encoder_projection_dropout": cfg.feat_proj_dropout, |
|
"encoder_pos_conv_kernel": cfg.num_conv_pos_embeddings, |
|
"encoder_pos_conv_groups": cfg.num_conv_pos_embedding_groups, |
|
"encoder_num_layers": cfg.num_hidden_layers, |
|
"encoder_num_heads": cfg.num_attention_heads, |
|
"encoder_attention_dropout": cfg.attention_dropout, |
|
"encoder_ff_interm_features": cfg.intermediate_size, |
|
"encoder_ff_interm_dropout": cfg.activation_dropout, |
|
"encoder_dropout": cfg.hidden_dropout, |
|
"encoder_layer_norm_first": cfg.do_stable_layer_norm, |
|
"encoder_layer_drop": cfg.layerdrop, |
|
} |
|
return config |
|
|
|
|
|
def _get_config_wavlm(cfg): |
|
config = { |
|
"extractor_mode": f"{cfg.feat_extract_norm}_norm", |
|
"extractor_conv_layer_config": list(zip(cfg.conv_dim, cfg.conv_kernel, cfg.conv_stride)), |
|
"extractor_conv_bias": cfg.conv_bias, |
|
"encoder_embed_dim": cfg.hidden_size, |
|
"encoder_projection_dropout": cfg.feat_proj_dropout, |
|
"encoder_pos_conv_kernel": cfg.num_conv_pos_embeddings, |
|
"encoder_pos_conv_groups": cfg.num_conv_pos_embedding_groups, |
|
"encoder_num_layers": cfg.num_hidden_layers, |
|
"encoder_use_attention": [True] * cfg.num_hidden_layers, |
|
"encoder_use_feed_forward": [True] * cfg.num_hidden_layers, |
|
"encoder_total_num_heads": [cfg.num_attention_heads for _ in range(cfg.num_hidden_layers)], |
|
"encoder_remaining_heads": [list(range(cfg.num_attention_heads)) for _ in range(cfg.num_hidden_layers)], |
|
"encoder_num_buckets": cfg.num_buckets, |
|
"encoder_max_distance": cfg.max_bucket_distance, |
|
"encoder_attention_dropout": cfg.attention_dropout, |
|
"encoder_ff_interm_features": [cfg.intermediate_size for _ in range(cfg.num_hidden_layers)], |
|
"encoder_ff_interm_dropout": cfg.activation_dropout, |
|
"encoder_dropout": cfg.hidden_dropout, |
|
"encoder_layer_norm_first": cfg.do_stable_layer_norm, |
|
"encoder_layer_drop": cfg.layerdrop, |
|
"normalize_waveform": cfg.feat_extract_norm == "layer", |
|
} |
|
return config |
|
|
|
|
|
def _build(config, original): |
|
is_for_ctc = original.__class__.__name__ in ["Wav2Vec2ForCTC", "WavLMForCTC"] |
|
if is_for_ctc: |
|
aux_num_out = original.config.vocab_size |
|
wav2vec2 = original.wav2vec2 |
|
else: |
|
_LG.warning( |
|
"The model is not an instance of Wav2Vec2ForCTC or WavLMForCTC. " '"lm_head" module is not imported.' |
|
) |
|
aux_num_out = None |
|
wav2vec2 = original |
|
is_wavlm = original.__class__.__name__ in ["WavLMModel", "WavLMForCTC"] |
|
if is_wavlm: |
|
imported = wavlm_model(**config, aux_num_out=aux_num_out) |
|
else: |
|
imported = wav2vec2_model(**config, aux_num_out=aux_num_out) |
|
print(imported.feature_extractor.load_state_dict(wav2vec2.feature_extractor.state_dict(), strict=False)) |
|
print(imported.encoder.feature_projection.load_state_dict(wav2vec2.feature_projection.state_dict(), strict=False)) |
|
encoder_state_dict = wav2vec2.encoder.state_dict() |
|
if is_wavlm: |
|
transform_wavlm_encoder_state(encoder_state_dict, config["encoder_num_layers"]) |
|
print(imported.encoder.transformer.load_state_dict(encoder_state_dict, strict=False)) |
|
if is_for_ctc: |
|
imported.aux.load_state_dict(original.lm_head.state_dict()) |
|
return imported |
|
|
|
|
|
def transform_wavlm_encoder_state(state: Dict[str, Any], encoder_num_layers: int): |
|
"""Converts WavLM encoder state from HuggingFace format. In particular, concatenates linear projection weights and |
|
biases to align with the structure of ``torch.nn.MultiheadAttention``. |
|
""" |
|
pass |
|
|
|
|
|
def import_huggingface_model(original: Module) -> Wav2Vec2Model: |
|
"""Builds :class:`Wav2Vec2Model` from the corresponding model object of |
|
`Transformers <https://huggingface.co/transformers/>`_. |
|
|
|
Args: |
|
original (torch.nn.Module): An instance of ``Wav2Vec2ForCTC`` from ``transformers``. |
|
|
|
Returns: |
|
Wav2Vec2Model: Imported model. |
|
|
|
Example |
|
>>> from torchaudio.models.wav2vec2.utils import import_huggingface_model |
|
>>> |
|
>>> original = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") |
|
>>> model = import_huggingface_model(original) |
|
>>> |
|
>>> waveforms, _ = torchaudio.load("audio.wav") |
|
>>> logits, _ = model(waveforms) |
|
""" |
|
_LG.info("Importing model.") |
|
_LG.info("Loading model configuration.") |
|
is_wavlm = original.__class__.__name__ in ["WavLMModel", "WavLMForCTC"] |
|
if is_wavlm: |
|
config = _get_config_wavlm(original.config) |
|
else: |
|
config = _get_config(original.config) |
|
_LG.debug(" - config: %s", config) |
|
_LG.info("Building model.") |
|
imported = _build(config, original) |
|
return imported |
|
|