so-vits-4.1-Daiwa-Scarlet / vencoder /dphubert /utils /import_huggingface_wavlm.py
yl12053's picture
FC
a47980a
raw
history blame
5.56 kB
"""Import Hugging Face transformers's wav2vec2.0 pretrained weights to torchaudios's format.
Originally from:
https://github.com/pytorch/audio/blob/main/torchaudio/models/wav2vec2/utils/import_huggingface.py
"""
import logging
from typing import Any, Dict
from torch.nn import Module
from ..model import wav2vec2_model, Wav2Vec2Model, wavlm_model
_LG = logging.getLogger(__name__)
def _get_config(cfg):
config = {
"extractor_mode": f"{cfg.feat_extract_norm}_norm",
"extractor_conv_layer_config": list(zip(cfg.conv_dim, cfg.conv_kernel, cfg.conv_stride)),
"extractor_conv_bias": cfg.conv_bias,
"encoder_embed_dim": cfg.hidden_size,
"encoder_projection_dropout": cfg.feat_proj_dropout,
"encoder_pos_conv_kernel": cfg.num_conv_pos_embeddings,
"encoder_pos_conv_groups": cfg.num_conv_pos_embedding_groups,
"encoder_num_layers": cfg.num_hidden_layers,
"encoder_num_heads": cfg.num_attention_heads,
"encoder_attention_dropout": cfg.attention_dropout,
"encoder_ff_interm_features": cfg.intermediate_size,
"encoder_ff_interm_dropout": cfg.activation_dropout,
"encoder_dropout": cfg.hidden_dropout,
"encoder_layer_norm_first": cfg.do_stable_layer_norm,
"encoder_layer_drop": cfg.layerdrop,
}
return config
def _get_config_wavlm(cfg):
config = {
"extractor_mode": f"{cfg.feat_extract_norm}_norm",
"extractor_conv_layer_config": list(zip(cfg.conv_dim, cfg.conv_kernel, cfg.conv_stride)),
"extractor_conv_bias": cfg.conv_bias,
"encoder_embed_dim": cfg.hidden_size,
"encoder_projection_dropout": cfg.feat_proj_dropout,
"encoder_pos_conv_kernel": cfg.num_conv_pos_embeddings,
"encoder_pos_conv_groups": cfg.num_conv_pos_embedding_groups,
"encoder_num_layers": cfg.num_hidden_layers,
"encoder_use_attention": [True] * cfg.num_hidden_layers,
"encoder_use_feed_forward": [True] * cfg.num_hidden_layers,
"encoder_total_num_heads": [cfg.num_attention_heads for _ in range(cfg.num_hidden_layers)],
"encoder_remaining_heads": [list(range(cfg.num_attention_heads)) for _ in range(cfg.num_hidden_layers)],
"encoder_num_buckets": cfg.num_buckets,
"encoder_max_distance": cfg.max_bucket_distance,
"encoder_attention_dropout": cfg.attention_dropout,
"encoder_ff_interm_features": [cfg.intermediate_size for _ in range(cfg.num_hidden_layers)],
"encoder_ff_interm_dropout": cfg.activation_dropout,
"encoder_dropout": cfg.hidden_dropout,
"encoder_layer_norm_first": cfg.do_stable_layer_norm,
"encoder_layer_drop": cfg.layerdrop,
"normalize_waveform": cfg.feat_extract_norm == "layer",
}
return config
def _build(config, original):
is_for_ctc = original.__class__.__name__ in ["Wav2Vec2ForCTC", "WavLMForCTC"]
if is_for_ctc:
aux_num_out = original.config.vocab_size
wav2vec2 = original.wav2vec2
else:
_LG.warning(
"The model is not an instance of Wav2Vec2ForCTC or WavLMForCTC. " '"lm_head" module is not imported.'
)
aux_num_out = None
wav2vec2 = original
is_wavlm = original.__class__.__name__ in ["WavLMModel", "WavLMForCTC"]
if is_wavlm:
imported = wavlm_model(**config, aux_num_out=aux_num_out)
else:
imported = wav2vec2_model(**config, aux_num_out=aux_num_out)
print(imported.feature_extractor.load_state_dict(wav2vec2.feature_extractor.state_dict(), strict=False))
print(imported.encoder.feature_projection.load_state_dict(wav2vec2.feature_projection.state_dict(), strict=False))
encoder_state_dict = wav2vec2.encoder.state_dict()
if is_wavlm: # Rename paramaters of linear transformations for compatibility with the HF model
transform_wavlm_encoder_state(encoder_state_dict, config["encoder_num_layers"])
print(imported.encoder.transformer.load_state_dict(encoder_state_dict, strict=False))
if is_for_ctc:
imported.aux.load_state_dict(original.lm_head.state_dict())
return imported
def transform_wavlm_encoder_state(state: Dict[str, Any], encoder_num_layers: int):
"""Converts WavLM encoder state from HuggingFace format. In particular, concatenates linear projection weights and
biases to align with the structure of ``torch.nn.MultiheadAttention``.
"""
pass
def import_huggingface_model(original: Module) -> Wav2Vec2Model:
"""Builds :class:`Wav2Vec2Model` from the corresponding model object of
`Transformers <https://huggingface.co/transformers/>`_.
Args:
original (torch.nn.Module): An instance of ``Wav2Vec2ForCTC`` from ``transformers``.
Returns:
Wav2Vec2Model: Imported model.
Example
>>> from torchaudio.models.wav2vec2.utils import import_huggingface_model
>>>
>>> original = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
>>> model = import_huggingface_model(original)
>>>
>>> waveforms, _ = torchaudio.load("audio.wav")
>>> logits, _ = model(waveforms)
"""
_LG.info("Importing model.")
_LG.info("Loading model configuration.")
is_wavlm = original.__class__.__name__ in ["WavLMModel", "WavLMForCTC"]
if is_wavlm:
config = _get_config_wavlm(original.config)
else:
config = _get_config(original.config)
_LG.debug(" - config: %s", config)
_LG.info("Building model.")
imported = _build(config, original)
return imported