|
from vencoder.encoder import SpeechEncoder |
|
import onnxruntime |
|
import torch |
|
|
|
class ContentVec256L9_Onnx(SpeechEncoder): |
|
def __init__(self,vec_path = "pretrain/vec-256-layer-9.onnx",device=None): |
|
print("load model(s) from {}".format(vec_path)) |
|
self.hidden_dim = 256 |
|
if device is None: |
|
self.dev = torch.device("cpu") |
|
else: |
|
self.dev = torch.device(device) |
|
if device == 'cpu' or device == torch.device("cpu") or device is None: |
|
providers = ['CPUExecutionProvider'] |
|
elif device == 'cuda' or device == torch.device("cuda"): |
|
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] |
|
self.model = onnxruntime.InferenceSession(vec_path, providers=providers) |
|
|
|
def encoder(self, wav): |
|
feats = wav |
|
if feats.dim() == 2: |
|
feats = feats.mean(-1) |
|
assert feats.dim() == 1, feats.dim() |
|
feats = feats.view(1, -1) |
|
feats = feats.unsqueeze(0).cpu().detach().numpy() |
|
onnx_input = {self.model.get_inputs()[0].name: feats} |
|
logits = self.model.run(None, onnx_input) |
|
return torch.tensor(logits[0]).transpose(1, 2).to(self.dev) |