Spaces:
Sleeping
Sleeping
File size: 5,564 Bytes
a47980a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
"""Import Hugging Face transformers's wav2vec2.0 pretrained weights to torchaudios's format.
Originally from:
https://github.com/pytorch/audio/blob/main/torchaudio/models/wav2vec2/utils/import_huggingface.py
"""
import logging
from typing import Any, Dict
from torch.nn import Module
from ..model import wav2vec2_model, Wav2Vec2Model, wavlm_model
_LG = logging.getLogger(__name__)
def _get_config(cfg):
config = {
"extractor_mode": f"{cfg.feat_extract_norm}_norm",
"extractor_conv_layer_config": list(zip(cfg.conv_dim, cfg.conv_kernel, cfg.conv_stride)),
"extractor_conv_bias": cfg.conv_bias,
"encoder_embed_dim": cfg.hidden_size,
"encoder_projection_dropout": cfg.feat_proj_dropout,
"encoder_pos_conv_kernel": cfg.num_conv_pos_embeddings,
"encoder_pos_conv_groups": cfg.num_conv_pos_embedding_groups,
"encoder_num_layers": cfg.num_hidden_layers,
"encoder_num_heads": cfg.num_attention_heads,
"encoder_attention_dropout": cfg.attention_dropout,
"encoder_ff_interm_features": cfg.intermediate_size,
"encoder_ff_interm_dropout": cfg.activation_dropout,
"encoder_dropout": cfg.hidden_dropout,
"encoder_layer_norm_first": cfg.do_stable_layer_norm,
"encoder_layer_drop": cfg.layerdrop,
}
return config
def _get_config_wavlm(cfg):
config = {
"extractor_mode": f"{cfg.feat_extract_norm}_norm",
"extractor_conv_layer_config": list(zip(cfg.conv_dim, cfg.conv_kernel, cfg.conv_stride)),
"extractor_conv_bias": cfg.conv_bias,
"encoder_embed_dim": cfg.hidden_size,
"encoder_projection_dropout": cfg.feat_proj_dropout,
"encoder_pos_conv_kernel": cfg.num_conv_pos_embeddings,
"encoder_pos_conv_groups": cfg.num_conv_pos_embedding_groups,
"encoder_num_layers": cfg.num_hidden_layers,
"encoder_use_attention": [True] * cfg.num_hidden_layers,
"encoder_use_feed_forward": [True] * cfg.num_hidden_layers,
"encoder_total_num_heads": [cfg.num_attention_heads for _ in range(cfg.num_hidden_layers)],
"encoder_remaining_heads": [list(range(cfg.num_attention_heads)) for _ in range(cfg.num_hidden_layers)],
"encoder_num_buckets": cfg.num_buckets,
"encoder_max_distance": cfg.max_bucket_distance,
"encoder_attention_dropout": cfg.attention_dropout,
"encoder_ff_interm_features": [cfg.intermediate_size for _ in range(cfg.num_hidden_layers)],
"encoder_ff_interm_dropout": cfg.activation_dropout,
"encoder_dropout": cfg.hidden_dropout,
"encoder_layer_norm_first": cfg.do_stable_layer_norm,
"encoder_layer_drop": cfg.layerdrop,
"normalize_waveform": cfg.feat_extract_norm == "layer",
}
return config
def _build(config, original):
is_for_ctc = original.__class__.__name__ in ["Wav2Vec2ForCTC", "WavLMForCTC"]
if is_for_ctc:
aux_num_out = original.config.vocab_size
wav2vec2 = original.wav2vec2
else:
_LG.warning(
"The model is not an instance of Wav2Vec2ForCTC or WavLMForCTC. " '"lm_head" module is not imported.'
)
aux_num_out = None
wav2vec2 = original
is_wavlm = original.__class__.__name__ in ["WavLMModel", "WavLMForCTC"]
if is_wavlm:
imported = wavlm_model(**config, aux_num_out=aux_num_out)
else:
imported = wav2vec2_model(**config, aux_num_out=aux_num_out)
print(imported.feature_extractor.load_state_dict(wav2vec2.feature_extractor.state_dict(), strict=False))
print(imported.encoder.feature_projection.load_state_dict(wav2vec2.feature_projection.state_dict(), strict=False))
encoder_state_dict = wav2vec2.encoder.state_dict()
if is_wavlm: # Rename paramaters of linear transformations for compatibility with the HF model
transform_wavlm_encoder_state(encoder_state_dict, config["encoder_num_layers"])
print(imported.encoder.transformer.load_state_dict(encoder_state_dict, strict=False))
if is_for_ctc:
imported.aux.load_state_dict(original.lm_head.state_dict())
return imported
def transform_wavlm_encoder_state(state: Dict[str, Any], encoder_num_layers: int):
"""Converts WavLM encoder state from HuggingFace format. In particular, concatenates linear projection weights and
biases to align with the structure of ``torch.nn.MultiheadAttention``.
"""
pass
def import_huggingface_model(original: Module) -> Wav2Vec2Model:
"""Builds :class:`Wav2Vec2Model` from the corresponding model object of
`Transformers <https://huggingface.co/transformers/>`_.
Args:
original (torch.nn.Module): An instance of ``Wav2Vec2ForCTC`` from ``transformers``.
Returns:
Wav2Vec2Model: Imported model.
Example
>>> from torchaudio.models.wav2vec2.utils import import_huggingface_model
>>>
>>> original = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
>>> model = import_huggingface_model(original)
>>>
>>> waveforms, _ = torchaudio.load("audio.wav")
>>> logits, _ = model(waveforms)
"""
_LG.info("Importing model.")
_LG.info("Loading model configuration.")
is_wavlm = original.__class__.__name__ in ["WavLMModel", "WavLMForCTC"]
if is_wavlm:
config = _get_config_wavlm(original.config)
else:
config = _get_config(original.config)
_LG.debug(" - config: %s", config)
_LG.info("Building model.")
imported = _build(config, original)
return imported
|