liuyizhang commited on
Commit
ed4b6a1
·
1 Parent(s): e12d135

update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -14
app.py CHANGED
@@ -12,7 +12,7 @@ else:
12
  # run_gradio = True
13
 
14
  if run_gradio:
15
- os.system("pip install gradio==3.40.1")
16
 
17
  import gradio as gr
18
 
@@ -346,21 +346,29 @@ def load_lama_cleaner_model(device):
346
 
347
  def lama_cleaner_process(image, mask, cleaner_size_limit=1080):
348
  try:
 
349
  ori_image = image
350
  if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]:
351
  # rotate image
 
352
  ori_image = np.transpose(image[::-1, ...][:, ::-1], axes=(1, 0, 2))[::-1, ...]
 
353
  image = ori_image
354
 
 
355
  original_shape = ori_image.shape
 
356
  interpolation = cv2.INTER_CUBIC
357
 
358
  size_limit = cleaner_size_limit
359
  if size_limit == -1:
 
360
  size_limit = max(image.shape)
361
  else:
 
362
  size_limit = int(size_limit)
363
 
 
364
  config = lama_Config(
365
  ldm_steps=25,
366
  ldm_sampler='plms',
@@ -385,22 +393,30 @@ def lama_cleaner_process(image, mask, cleaner_size_limit=1080):
385
  cv2_radius=5,
386
  )
387
 
 
388
  if config.sd_seed == -1:
389
  config.sd_seed = random.randint(1, 999999999)
390
 
391
  # logger.info(f"Origin image shape_0_: {original_shape} / {size_limit}")
 
392
  image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
393
  # logger.info(f"Resized image shape_1_: {image.shape}")
394
 
395
  # logger.info(f"mask image shape_0_: {mask.shape} / {type(mask)}")
 
396
  mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
397
  # logger.info(f"mask image shape_1_: {mask.shape} / {type(mask)}")
398
 
 
399
  res_np_img = lama_cleaner_model(image, mask, config)
 
400
  torch.cuda.empty_cache()
401
 
 
402
  image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png')))
 
403
  except Exception as e:
 
404
  image = None
405
  return image
406
 
@@ -863,7 +879,8 @@ def main_gradio(args):
863
  if kosmos_enable:
864
  task_types.append("Kosmos-2")
865
 
866
- input_image = gr.Image(source='upload', elem_id="image_upload", tool='sketch', type='pil', label="Upload")
 
867
  task_type = gr.Radio(task_types, value="detection",
868
  label='Task type', visible=True)
869
  mask_source_radio = gr.Radio([mask_source_draw, mask_source_segment],
@@ -894,7 +911,7 @@ def main_gradio(args):
894
  remove_mask_extend = gr.Textbox(label="remove_mask_extend", value='10')
895
 
896
  with gr.Column():
897
- image_gallery = gr.Gallery(label="result images", show_label=True, elem_id="gallery", visible=True
898
  ).style(preview=True, columns=[5], object_fit="scale-down", height="auto")
899
  time_cost = gr.Textbox(label="Time cost by step (ms):", visible=False, interactive=False)
900
 
@@ -1011,8 +1028,10 @@ class API_Starter:
1011
  def handle_data(self, data):
1012
  im_b64 = data['img']
1013
  img = base64_to_PILImage(im_b64)
 
 
1014
  results = run_anything_task(input_image = img,
1015
- text_prompt = data['remove_texts'],
1016
  task_type = 'remove',
1017
  inpaint_prompt = '',
1018
  box_threshold = 0.3,
@@ -1021,7 +1040,7 @@ class API_Starter:
1021
  inpaint_mode = "merge",
1022
  mask_source_radio = "type what to detect below",
1023
  remove_mode = "rectangle", # ["segment", "rectangle"]
1024
- remove_mask_extend = f"{data['mask_extend']}",
1025
  num_relation = 5,
1026
  kosmos_input = None,
1027
  cleaner_size_limit = -1,
@@ -1107,20 +1126,12 @@ if __name__ == "__main__":
1107
  if os.environ.get('IS_MY_DEBUG') is None:
1108
  os.system("pip list")
1109
 
1110
- # print(f'groundingdino_model__{get_model_device(groundingdino_model)}')
1111
- # print(f'sam_model__{get_model_device(sam_model)}')
1112
- # print(f'sd_model__{get_model_device(sd_model)}')
1113
- # print(f'lama_cleaner_model__{get_model_device(lama_cleaner_model)}')
1114
- # print(f'ram_model__{get_model_device(ram_model)}')
1115
- # print(f'kosmos_model__{get_model_device(kosmos_model)}')
1116
-
1117
  if run_gradio:
1118
  # Provide gradio services
1119
  main_gradio(args)
1120
  else:
1121
  # Provide API services
1122
  main_api(args)
1123
-
1124
-
1125
 
1126
 
 
12
  # run_gradio = True
13
 
14
  if run_gradio:
15
+ os.system("pip install gradio==3.50.2")
16
 
17
  import gradio as gr
18
 
 
346
 
347
  def lama_cleaner_process(image, mask, cleaner_size_limit=1080):
348
  try:
349
+ logger.info(f'_______lama_cleaner_process_______1____')
350
  ori_image = image
351
  if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]:
352
  # rotate image
353
+ logger.info(f'_______lama_cleaner_process_______2____')
354
  ori_image = np.transpose(image[::-1, ...][:, ::-1], axes=(1, 0, 2))[::-1, ...]
355
+ logger.info(f'_______lama_cleaner_process_______3____')
356
  image = ori_image
357
 
358
+ logger.info(f'_______lama_cleaner_process_______4____')
359
  original_shape = ori_image.shape
360
+ logger.info(f'_______lama_cleaner_process_______5____')
361
  interpolation = cv2.INTER_CUBIC
362
 
363
  size_limit = cleaner_size_limit
364
  if size_limit == -1:
365
+ logger.info(f'_______lama_cleaner_process_______6____')
366
  size_limit = max(image.shape)
367
  else:
368
+ logger.info(f'_______lama_cleaner_process_______7____')
369
  size_limit = int(size_limit)
370
 
371
+ logger.info(f'_______lama_cleaner_process_______8____')
372
  config = lama_Config(
373
  ldm_steps=25,
374
  ldm_sampler='plms',
 
393
  cv2_radius=5,
394
  )
395
 
396
+ logger.info(f'_______lama_cleaner_process_______9____')
397
  if config.sd_seed == -1:
398
  config.sd_seed = random.randint(1, 999999999)
399
 
400
  # logger.info(f"Origin image shape_0_: {original_shape} / {size_limit}")
401
+ logger.info(f'_______lama_cleaner_process_______10____')
402
  image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
403
  # logger.info(f"Resized image shape_1_: {image.shape}")
404
 
405
  # logger.info(f"mask image shape_0_: {mask.shape} / {type(mask)}")
406
+ logger.info(f'_______lama_cleaner_process_______11____')
407
  mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
408
  # logger.info(f"mask image shape_1_: {mask.shape} / {type(mask)}")
409
 
410
+ logger.info(f'_______lama_cleaner_process_______12____')
411
  res_np_img = lama_cleaner_model(image, mask, config)
412
+ logger.info(f'_______lama_cleaner_process_______13____')
413
  torch.cuda.empty_cache()
414
 
415
+ logger.info(f'_______lama_cleaner_process_______14____')
416
  image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png')))
417
+ logger.info(f'_______lama_cleaner_process_______15____')
418
  except Exception as e:
419
+ logger.info(f'lama_cleaner_process[Error]:' + str(e))
420
  image = None
421
  return image
422
 
 
879
  if kosmos_enable:
880
  task_types.append("Kosmos-2")
881
 
882
+ input_image = gr.Image(source='upload', elem_id="image_upload", tool='sketch', type='pil', label="Upload",
883
+ height=512, brush_color='#00FFFF', mask_opacity=0.6)
884
  task_type = gr.Radio(task_types, value="detection",
885
  label='Task type', visible=True)
886
  mask_source_radio = gr.Radio([mask_source_draw, mask_source_segment],
 
911
  remove_mask_extend = gr.Textbox(label="remove_mask_extend", value='10')
912
 
913
  with gr.Column():
914
+ image_gallery = gr.Gallery(label="result images", show_label=True, elem_id="gallery", height=512, visible=True
915
  ).style(preview=True, columns=[5], object_fit="scale-down", height="auto")
916
  time_cost = gr.Textbox(label="Time cost by step (ms):", visible=False, interactive=False)
917
 
 
1028
  def handle_data(self, data):
1029
  im_b64 = data['img']
1030
  img = base64_to_PILImage(im_b64)
1031
+ remove_texts = data['remove_texts']
1032
+ remove_mask_extend = data['mask_extend']
1033
  results = run_anything_task(input_image = img,
1034
+ text_prompt = f"{remove_texts}",
1035
  task_type = 'remove',
1036
  inpaint_prompt = '',
1037
  box_threshold = 0.3,
 
1040
  inpaint_mode = "merge",
1041
  mask_source_radio = "type what to detect below",
1042
  remove_mode = "rectangle", # ["segment", "rectangle"]
1043
+ remove_mask_extend = f"{remove_mask_extend}",
1044
  num_relation = 5,
1045
  kosmos_input = None,
1046
  cleaner_size_limit = -1,
 
1126
  if os.environ.get('IS_MY_DEBUG') is None:
1127
  os.system("pip list")
1128
 
 
 
 
 
 
 
 
1129
  if run_gradio:
1130
  # Provide gradio services
1131
  main_gradio(args)
1132
  else:
1133
  # Provide API services
1134
  main_api(args)
1135
+
 
1136
 
1137